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Affine moments of a random vector
Erwin Lutwak, Songjun Lv, Deane Yang, and Gaoyong Zhang

Abstract—An affine invariant p-th moment measure is defined
for a random vector and used to prove sharp moment-entropy
inequalities that are more general and stronger than standard
moment-entropy inequalities.

Index Terms—Moment, affine moment, information measure,
information theory, entropy, Rényi entropy, Shannon entropy,
Shannon theory, entropy inequality, Gaussian, generalized Gaus-
sian.

I. INTRODUCTION

The moment-entropy inequality states that a continuous ran-
dom variable with given second moment has maximal Shannon
entropy if and only if it is a Gaussian (see, for example, [15],
Theorem 9.6.5). The Fisher information inequality states that
a continuous random variable with given Fisher information
has minimal Shannon entropy if and only if it is a Gaussian
(see [40]). In [32] these classical inequalities were extended to
sharp inequalities involving the Rényi entropy, p-th moment,
and generalized Fisher information of a random variable,
where the extremal distributions are no longer Gaussians but
are fat-tailed distributions that the authors call generalized
Gaussians.

There are different ways to extend the definition of a p-th
moment to random vectors in Rn. The most obvious one is
to define it using the Euclidean norm of the random vector.
This, however, assumes that the standard inner product on Rn

gives the right invariant scalar measure of error or noise in the
random vector. It is more appropriate to seek a definition of
moment that does not rely on the standard inner product.

For example, if the moment of a random vector is defined
using the standard Euclidean norm, then the extremals for
the corresponding classical moment-entropy inequality are
Gaussians with covariance matrix equal to a multiple of the
identity. It is more desirable to define an invariant moment
measure, where any Gaussian (or generalized Gaussian) is an
extremal distribution and not just the one whose covariance
matrix is a multiple of the identity.

One approach for defining an invariant moment measure,
taken in [35], leads to the definition of the p-th moment matrix
and the corresponding sharp moment-entropy inequalities.

Here, we introduce a different approach, where a scalar
affine moment measure is defined by averaging 1-dimensional
p-th moments obtained by projecting an n-dimensional ran-
dom vector along each possible direction in Rn with respect to
a given probability measure, and then optimizing this average
over all probability measures with given p-th moment. An
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explicit integral formula for this moment is derived. We then
establish sharp information inequalities giving a sharp lower
bound of Rényi entropy in terms of the affine moment. These
new affine moment-entropy inequalities imply the moment-
entropy inequalities obtained in [32], [35].

In [26] an approach similar to the one taken here is used
to define an affine invariant version of Fisher information,
and a corresponding sharp Fisher information inequality is
established.

It is worth noting that the affine moment measure introduced
here, as well as the affine Fisher information studied in [26],
is closely related to analogous affine invariant generalizations
of the surface area of a convex body (see, for example, [9],
[27], [30]). In fact, the results presented here are part of an
ongoing effort by the authors to explore connections between
information theory and geometry.

Previous results on this include a connection between the
entropy power inequality in information theory and the Brunn-
Minkowski inequality in convex geometry first demonstrated
by Lieb [23] and also discussed by Costa and Cover [12]. This
was developed further by Cover, Dembo, and Thomas [14]
(also, see [15]). Also, see [10] for generalizations of various
entropy and Fisher information inequalities related to mass
transportation, and [4]–[8], [37], [38] for a new connection
between affine information inequalities and log-concavity.

In view of this, the authors of [19] began to systematically
explore connections between information theory and convex
geometry. The goals are to both establish information-theoretic
inequalities that are the counterparts of geometric inequalities
and investigate possible applications of ideas in information
theory to convex geometry. This has led to papers in both
information theory (see [19], [26], [31], [32], [35]) and convex
geometry (see [28], [29]). In the next section we follow the
suggestion of a referee and provide a brief survey of this
ongoing effort.

II. INFORMATION THEORETIC AND GEOMETRIC
INEQUALITIES

The usual way of associating a random vector X in Rn with
a compact convex set K in Rn is to define X as the uniform
random vector in K. In [19], a different construction of
random vectors associated to a star-shaped set was introduced.
It was also shown that the information theoretic invariants
of the distributions constructed, called contoured distributions
are equivalent to geometric invariants of the convex set K.
This provides a direct link between sharp information theoretic
inequalities satisfied by contoured distributions and sharp
geometric inequalities satisfied by convex sets.

Let K be a bounded star-shaped set in Rn about the origin.
Its gauge function, gK : Rn → [0,∞), is defined by

gK(x) = inf{t > 0 : x ∈ tK}.
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The gauge function is homogeneous of degree 1.
A random vector X has a contoured distribution if its

probability density function is given by

fX(x) = ψ(gK(x− x0)),

where K is a bounded star-shaped set with respect to the point
x0, and ψ is a 1-dimensional function that we call the radial
profile. If ψ is monotone, then the level sets of fX are dilates
of K with respect to x0.

A straightforward calculation shows that the entropy h(X)
of X is given by

h(X) = c0(ψ, n)V (K),

where c0(ψ, n) is a constant depending only on the radial
profile ψ and the dimension n and V (K) is the n-dimensional
volume (i.e., n-dimensional Lebesgue measure) of K. Another
calculation shows that the Fisher information J(X) of X is
given by

J(X) = c1(ψ, n)S2(K),

where c1(ψ, n) is another constant depending on ψ and n and

S2(K) =
∫

∂K

dS(x)
x · ν(x)

is called the L2 surface area of K, where the outer unit normal
vector ν(x) exists for almost every x ∈ ∂K with respect to
the (n− 1)-dimensional Hausdorff measure dS.

The L2 surface area S2(K) is a geometric invariant in
the Lp Brunn-Minkowski theory in convex geometry. The
usual surface area is viewed as the L1 surface area in the
Lp Brunn-Minkowski theory (see [25]). The formula of the
Fisher information and the L2 surface area implies that the
classical information theory is closely associated to the L2

Brunn-Minkowski theory. Let K be a convex body (compact
convex set with nonempty interior) and X be a random vector
in Rn. Denote by B the n-dimensional unit ball and by
Z the n-dimensional standard Gaussian random vector. The
following variational formula,

lim
t→0+

V (K +2

√
tB)− V (K)
t

=
1
2
S2(K),

where +2 is the L2 Minkowski addition (see [25]), and the
de Bruijn’s identity,

lim
t→0+

h(X +
√
tZ)− h(X)
t

=
1
2
J(X),

further illustrate the close connection of information theory
and geometry.

These connections lead to the definition of a new ellipsoid
in the L2 Brunn-Minkowski theory which is the counterpart of
the Fisher information matrix (see [28]), and thus a Cramer-
Raó inequality for star-shaped sets was proved in [29]. The
results were, in turn, applied to information theory to show
new information-theoretic inequalities (see [19]).

It is then natural to investigate the counterpart of the
Lp Brunn-Minkowski theory in information theory. The new
ellipsoid discovered was shown in [33] to be the L2 case
of a family of ellipsoids, called Lp John ellipsoids, while

the classical John ellipsoid (the ellipsoid of maximal volume
inside a convex body) is the L∞ case. This new result in
convex geometry suggests that it is natural to define a concept
of Lp Fisher information matrix as a corresponding object of
the Lp John ellipsoid. The usual Fisher information matrix
is the L2 case. This was done in the recent paper [26]. An
extension of the covariance matrix to Lp covariance matrix
(also called p-moment matrix) was given earlier in the paper
[35], which corresponds to another family of ellipsoids in
geometry that contains the classical Legendre ellipsoid and
is conceptually dual to the family of Lp John ellipsoids.

Affine isoperimetric inequalities are central in the Lp Brunn-
Minkowski theory. The authors have been exploring their cor-
responding affine information-theoretic inequalities. See the
survey papers [24] and [42] on affine isoperimetric inequalities
in convex geometry.

For p ≥ 1, λ > n
n+p , and independent random vectors X,Y

in Rn, the following moment-entropy inequality was proved
in [31],

E(|X · Y |p) ≥ cNλ(X)pNλ(Y )p, (1)

where Nλ denotes the λ-Rényi entropy power, and c is the best
constant that is attained when X,Y are certain generalized
Gaussian random vectors. The affine isoperimetric inequality
behind this moment-entropy inequality is an Lp extension of
the well-known Blaschke-Santaló inequality in geometry (see
[36]).

The Shannon entropy h(X) and the λ-Rényi entropy power
Nλ(X) of a continuous random vector X in Rn are affine
invariants, that is, they are invariant under linear transfor-
mations of random vectors. To establish affine information-
theoretic inequalities as counterparts of affine isoperimetric
inequalities, affine notions of Fisher information and moments
as corresponding notions of affine surface areas are needed.

In [26], the authors introduced the notion of affine (p, λ)-
Fisher information Ψp,λ(X) of a random vector X in Rn,
which is an analogue of the Lp integral affine surface area of
a convex body. It was shown that the following affine Fisher
information and entropy inequality holds:

Ψp,λ(X)Nλ(X)p((λ−1)n+1) ≥ c, (2)

where 1 ≤ p < n, λ > 1 − 1
n , and c is the best constant

that is attained when X is a generalized Gaussian random
vector. This inequality is proved by using an Lp affine Sobolev
inequality established in [30] (see also [41]). The Lp affine
Sobolev inequality is stronger than the classical Lp Sobolev
inequality and comes from the Lp Petty projection inequality
established in [27] which is an important affine isoperimet-
ric inequality in the Lp Brunn-Minkowski theory of convex
geometry.

It is one of the purposes this paper to introduce the notion
of affine p-th moment Mp(X) of a random vector X in Rn,
and to establish an affine moment-entropy inequality. We shall
prove the following theorem.

Theorem 1: If 1 ≤ p < ∞, λ > n
n+p , and X is a random

vector in Rn with finite λ-Rényi entropy and p-th moment,
then

Mp(X) ≥ cNλ(X)p, (3)
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where c is the best constant that is attained only when X is a
generalized Gaussian random vector.

The inequality (3) is proved by using (1). Thus, the affine
isoperimetric inequality behind the affine moment-entropy
inequality (3) is the Lp extension of the Blaschke-Santaló
inequality.

III. PRELIMINARIES

Let X be a random vector in Rn with probability density
function fX .

If A is an invertible n× n matrix, then

fAX(y) = |A|−1fX(A−1y), (4)

where |A| is the absolute value of the determinant of A.

A. The p-th moment of a random vector
For p ∈ (0,∞), the p-th moment of X is defined to be

E(|X|p) =
∫
Rn

|x|pfX(x)dx,

where | · | denotes the standard Euclidean norm and dx the
standard Lebesgue measure in Rn.

B. Entropy power
The Shannon entropy of X is given by

h(X) = −
∫
Rn

fX(x) log fX(x) dx.

For λ > 0, the λ-Rényi entropy power of X is defined to be

Nλ(X) =


(∫

Rn

fX(x)λ dx

) 1
n(1−λ)

if λ 6= 1,

e
1
n h(X) if λ = 1,

and the λ-Rényi entropy is

hλ(X) = n logNλ(X).

By (4),
Nλ(AX) = |A| 1nNλ(X), (5)

for any invertible matrix A.

IV. GENERALIZED GAUSSIANS

A. Definition
If α > 0 and β < α/n, the corresponding generalized

standard Gaussian random vector Z ∈ Rn has density function

fZ(x) =

aα,β

(
1− β

α |x|
α
) 1

β−
n
α−1

+
if β 6= 0,

aα,0e
−|x|α/α if β = 0,

where t+ = max{t, 0} for t ∈ R,

aα,β =



α
n |

β
α |

n
α Γ(n

2 + 1)
π

n
2B(n

α , 1−
1
β )

if β < 0,

Γ(n
2 + 1)

π
n
2 α

n
α Γ(n

α + 1)
if β = 0,

α
n (β

α )
n
α Γ(n

2 + 1)
π

n
2B(n

α ,
1
β −

n
α )

if β > 0,

Γ(·) denotes the gamma function, and B(·, ·) denotes the beta
function. Any random vector that can be written as W = AZ,
for an invertible matrix A, is called a generalized Gaussian.
If α = 2 and β = 0, then Z is the standard Gaussian random
vector with mean 0 and variance matrix equal to the identity.

The functions in the generalized standard Gaussian dis-
tributions, which are also called Barenblatt functions, have
been found to arise naturally as extremals for Sobolev type
inequalities and sharp inequalities relating moment, Rényi
entropy, and generalized Fisher information (see, for example,
[1], [3], [10], [11], [13], [16], [17], [20], [26], [31], [32],
[34], [35]). The usual Gaussians and Student distributions
are generalized Gaussians. The whole class of generalized
Gaussian distributions in this form were first studied in [31] as
extremal distributions of moment-entropy inequalities. Many
authors have studied special cases of generalized Gaussians
(see, for example, [1]–[3], [13], [16], [18], [21], [22], [39]).

B. Information measures of generalized Gaussians

Given 0 < p < ∞ and λ > n/(n + p), set the parameters
α and β of the standard generalized Gaussian Z so that

α = p,
1
β
− n+ α

α
=

1
λ− 1

, (6)

and β = 0 when λ = 1. We assume throughout this paper that
p, λ, and the parameters α and β of the standard generalized
Gaussian satisfy these equations.

The p-th moment of Z is given by

E(|Z|p) = n, (7)

and its Rényi entropy power by

Nλ(Z) =


a
− 1

n

α,β

(
1− nβ

α

) 1
n(1−λ)

if λ 6= 1,

a
− 1

n
α,0 e

1
α if λ = 1.

(8)

See [35] for similar formulas. The following are sketches of
calculation.

For β < 0 ( n
n+α < λ < 1), by polar coordinates and change

of variable (1− β
αr

α) = 1
t , we have

E(|Z|α)

= aα,β

∫
Rn

|x|α
(

1− β

α
|x|α

) 1
β−

n
α−1

+

dx

= aα,βnωn

∫ ∞

0

(
1− β

α
rα

) 1
β−

n
α−1

rn+α−1dr

= aα,βnωn

( α

−β

)n
α +1 1

α

∫ 1

0

t−
1
β−1(1− t)

n
α dt

= aα,β
nπ

n
2

αΓ(1 + n
2 )

( α

−β

)n
α +1

B
( 1
−β

,
n

α
+ 1
)

= n,
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and

Nλ(Z)

=

(
aλ

α,β

∫
Rn

(
1− β

α
|x|α

)λ( 1
β−

n
α−1)

+

dx

) 1
n(1−λ)

= a′α,β

[
nωn

∫ ∞

0

(
1− β

α
rα

) 1
β−

n
α

+

rn−1dr

] 1
n(1−λ)

= a′α,β

[
nωn

α

( α

−β

)n
α

∫ 1

0

t−
1
β−1(1− t)

n
α−1dt

] 1
n(1−λ)

= a′α,β

[
nωn

α

( α

−β

)n
α 1
α
B
( 1
−β

,
n

α

)] 1
n(1−λ)

= a
− 1

n

α,β

(
1− βn

α

) 1
n(1−λ)

,

where a′α,β = a
− 1

n (1+ 1
λ−1 )

α,β .
For 0 < β < α

n (λ > 1), by polar coordinates and change
of variable β

αr
α = t, we have

E(|Z|α)

= aα,β

∫
Rn

|x|α
(

1− β

α
|x|α

) 1
β−

n
α−1

+

dx

= aα,βnωn

∫ ∞

0

(
1− β

α
rα

) 1
β−

n
α−1

+

rn+α−1dr

= aα,βnωn

(α
β

)n
α +1 1

α

∫ 1

0

t
n
α (1− t)

1
β−

n
α−1dt

=
aα,βnπ

n
2

αΓ(1 + n
2 )

(α
β

)n
α +1

B
( 1
β
− n

α
,
n

α
+ 1
)

= n,

and

Nλ(Z)

=

(
aλ

α,β

∫
Rn

(
1− β

α
|x|α

)λ( 1
β−

n
α−1)

+

dx

) 1
n(1−λ)

= a′α,β

[
nωn

∫ ∞

0

(
1− β

α
rα

) 1
β−

n
α

+

rn−1dr

] 1
n(1−λ)

= a′α,β

[
nωn

α

(α
β

)n
α

∫ 1

0

t
n
α−1(1− t)

1
β−

n
α dt

] 1
n(1−λ)

= a′α,β

[
nωn

α

(
α

β

)n
α

B
(
1 +

1
β
− n

α
,
n

α

)] 1
n(1−λ)

= a
− 1

n

α,β

(
1− βn

α

) 1
n(1−λ)

.

For β = 0 (λ = 1), by polar coordinates and change of

variable 1
αr

α = t, we have

E(|Z|α)

= aα,0

∫
Rn

|x|αe− 1
α |x|

α

dx

= aα,0nωn

∫ ∞

0

e−
1
α rα

rn+α−1dr

= aα,0nωnα
n
α

∫ ∞

0

e−tt
n
α dt

= aα,0
nπ

n
2

Γ(1 + n
2 )
α

n
α Γ
(n
α

+ 1
)

= n,

h(Z)

= −
∫

Rn

fZ(x) log fZ(x) dx

= −
∫

Rn

fZ(x) log
(
aα,0e

− |x|α
α

)
dx

= −
∫

Rn

fZ(x) log aα,0 + fZ(x)
(
− |x|α

α

)
dx

= − log aα,0 +
1
α
E(|Z|α)

= − log aα,0 +
n

α
,

and thus,
N1(Z) = a

− 1
n

α,0 e
1
α .

V. NOTIONS OF AN AFFINE MOMENT

If G is the standard Gaussian random vector in R with mean
0 and variance matrix equal to the identity, then the classical
moment-entropy inequality (see, for example, [15]) states that
for a random vector X in R,

E(|X|2)
N1(X)2

≥ E(|G|2)
N1(G)2

, (9)

with equality if and only if X = tG, for some t ∈ R\{0}. In
[31], [32], [35], this was extended to the following inequality
for the λ-Rényi entropy and p-th moment.

Theorem 2: If p ∈ (0,∞), λ > n/(n+ p), and X ∈ Rn is
a random vector such that Nλ(X), E(|X|p) <∞, then

E(|X|p)
Nλ(X)p

≥ E(|Z|p)
Nλ(Z)p

,

with equality if and only if there exists t > 0 such that
X = tZ, where Z is the standard generalized Gaussian with
parameters α and β satisfying (6).

In [35], an affine p-th moment of a random vector X is
defined by

mp(X) = inf{E(|AX|p) : A ∈ SL(n)},

and the following affine moment-entropy inequality was
shown.

Theorem 3: If p ∈ (0,∞), λ > n/(n + p), and X is a
random vector in Rn satisfying Nλ(X), E(|X|p) <∞, then

mp(X)
Nλ(X)p

≥ E(|Z|p)
Nλ(Z)p

,
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with equality if and only if X = TZ for the standard
generalized Gaussian Z and some T ∈ GL(n).

Theorem 3 is formally stronger than Theorem 2, but the
two are equivalent. Theorem 3 is an affine formulation of
Theorem 2. The affine moment mp(X) has no explicit formula
in terms of the density of X . This makes the calculation
difficult. Is there a notion of affine moments that has an explicit
formula and also gives an essentially stronger moment-entropy
inequality than those in Theorems 2 and 3?

The definition of mp(X) can be formulated differently as
follows: Let F be the class of norms on Rn that is given by

F = {‖ · ‖A : A ∈ SL(n)},

where ‖ · ‖A is defined by ‖x‖A = |Ax|, x ∈ Rn. Then

mp(X) = inf
‖·‖A∈F

E(‖X‖p
A).

We shall use a larger class of norms than F to define
the affine moment Mp(X). The norms are generated by the
p-cosine transforms of density functions. We shall give an
explicit formula for the affine moment Mp(X) and establish
the affine moment-entropy inequality in Theorem 1 which is
essentially stronger than Theorems 2 and 3.

A similar approach was used in [26] to define a notion of
affine Fisher information.

VI. THE AFFINE p-TH MOMENT OF A RANDOM VECTOR

A. Definition

A random vector X in Rn with density g is said to have
finite p-moment for p > 0, if∫

Rn

|x|pg(x) dx <∞.

The p-cosine transform of a random vector Y with finite p-
th moment and density g defines the following norm on Rn,

‖x‖Y,p =
(∫

Rn

|x · y|pg(y) dy
) 1

p

, x ∈ Rn. (10)

If p > 0 and X is a random vector, then we define the affine
p-th moment of X to be

Mp(X) = inf
Nλ(Y )=c1

E(‖X‖p
Y,p), (11)

where each random vector Y is independent of X and has
finite p-th moment and λ-Rényi entropy power equal to a
constant c1 which will be chosen appropriately later.

The definition above appears to depend on the parameter
λ, but by Theorem 5 and (14), which are stated in Sections
VI-B and VI-D, the value of Mp(X) is in fact independent
of λ when the constant c1 is properly chosen. We also show
below that the infimum in the definition above is achieved,
and the affine p-th moment Mp(X) is invariant under volume-
preserving linear transformations of the random vector X .

B. An integral representation for affine moments

The following is a special case of the dual Minkowski
inequality for random vectors established in [31], Lemma 4.1.

Lemma 4: If p > 0, λ > n
n+p , and X and Y are

independent random vectors in Rn with finite p-th moment,
then∫

Rn

E(|y ·X|p)g(y) dy

≥ Nλ(Y )p

(
a1

∫
Sn−1

E(|u ·X|p)−
n
p du

)− p
n

,

where g is the density of Y , Sn−1 is the unit sphere in Rn,
du denotes the Lebesgue measure on Sn−1,

a1 =



a0

n
B

(
n

p
,

1
1− λ

− n

p

)
if λ < 1,

1
n

(pe
n

)n
p

Γ
(

1 +
n

p

)
if λ = 1,

a0

n
B

(
n

p
,

λ

λ− 1

)
if λ > 1,

and

a0 =
n

p

(
1 +

n(λ− 1)
pλ

) 1
λ−1

∣∣∣∣1 +
pλ

n(λ− 1)

∣∣∣∣n
p

.

Equality is attained, if the density of Y is given by

g(y) =


b(1 + a‖y‖p)

1
λ−1 if λ < 1,

be−a‖y‖p

if λ = 1,

b(1− a‖y‖p)
1

λ−1
+ if λ > 1,

(12)

for a, b > 0, where the norm ‖ · ‖ is given by ‖y‖p = E(|y ·
X|p) for each y ∈ Rn.

The following is the integral representation for the affine
p-th moment.

Theorem 5: If p > 0 and X is a random vector with finite
p-th moment and density f , then

Mp(X) =
[
c0

∫
Sn−1

E(|u ·X|p)−
n
p du

]− p
n

,

where c0 = a1
cn
1

.
Proof: If Y is a random vector such that Nλ(Y ) = c1,

then by the Fubini theorem and Lemma 4,

E(‖X‖p
Y,p)

=
∫
Rn

∫
Rn

|x · y|pg(y) dy f(x) dx

=
∫
Rn

∫
Rn

|x · y|pf(x) dx g(y) dy

=
∫
Rn

E(|y ·X|p)g(y) dy

≥
[
c0

∫
Sn−1

E(|u ·X|p)−
n
p du

]− p
n

.

Moreover, by the equality condition of Lemma 4, equality is
attained if Y is a random vector whose density is given by
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(12), normalized so that Nλ(Y ) = c1. Therefore,

Mp(X) = inf
Nλ(Y )=c1

E(‖X‖p
Y,p)

=
[
c0

∫
Sn−1

E(|u ·X|p)−
n
p du

]− p
n

.

C. Affine invariance of the affine p-th moment

Theorem 6: If X is a random vector in Rn with finite p-th
moment, then

Mp(AX) = Mp(X),

for each A ∈ SL(n).
Proof: If A ∈ GL(n), then it follows by (10) that

E(‖AX‖p
Y,p)

=
∫
Rn

∫
Rn

|Ax · y|pg(y) dy f(x) dx

=
∫
Rn

∫
Rn

|x ·Aty|pg(y) dy f(x) dx

= E(‖X‖p
AtY ).

Thus, if A ∈ SL(n), then by (5),

Mp(AX) = inf
Nλ(Y )=c1

E(‖AX‖p
Y,p)

= inf
Nλ(Y )=c1

E(‖X‖p
AtY,p)

= inf
Nλ(AtY )=c1

E(‖X‖p
AtY,p)

= Mp(X).

D. The affine p-th moment of a spherically contoured random
vector

Denote the volume of the unit ball in Rn by

ωn =
π

n
2

Γ(1 + n
2 )
,

and observe that ∫
Sn−1

du = nωn. (13)

Let

ωn,p =
∫

Sn−1
|u · en|p du =

2π
n−1

2 Γ(p+1
2 )

Γ(n+p
2 )

,

where en is a fixed unit vector, for example, en = (0, . . . , 0, 1).
We choose the constant c1 so that the constant c0 = a1

cn
1

is
given by

c0 =
1
nωn

(
ωn,p

nωn

)n
p

=
Γ(n

2 )
2π

n
2

(
Γ(n

2 )Γ(p+1
2 )

π
1
2 Γ(n+p

2 )

)n
p

. (14)

A random vector X is called spherically contoured if its
density f can be written as f(x) = F (|x|), x ∈ Rn, where
F : [0,∞) → [0,∞).

Lemma 7: If X is a spherically contoured random vector
with finite p-th norm and density given by f(x) = F (|x|),
x ∈ Rn, then

Mp(X) = nωn

∫ ∞

0

F (ρ)ρp+n−1 dρ. (15)

Proof: For each u ∈ Sn−1,

E(|u ·X|p) =
∫
Rn

|u · x|p F (|x|) dx

=
∫ ∞

0

∫
Sn−1

|u · v|p dv F (ρ)ρp+n−1 dρ

= ωn,p

∫ ∞

0

F (ρ)ρp+n−1 dρ.

By Theorem 5,

Mp(X) =
[
c0

∫
Sn−1

E(|u ·X|p)−
n
p du

]− p
n

= nωn

∫ ∞

0

F (ρ)ρp+n−1 dρ.

E. Affine versus Euclidean

Lemma 8: If p > 0 and X is a random vector in Rn, then

Mp(X) ≤ E(|X|p). (16)

Equality holds if and only if the function v 7→ E(|v ·X|p) is
constant for v ∈ Sn−1. In particular, equality holds if X is
spherically contoured.

Proof: If f is the density of X and u ∈ Sn−1, then∫
Sn−1

E(|u ·X|p) du

=
∫

Sn−1

∫
Rn

|u · x|pf(x) dx du

=
∫
Rn

(∫
Sn−1

∣∣∣∣u · x|x|
∣∣∣∣p du) |x|pf(x) dx

= ωn,pE(|X|p).

Therefore, by Theorem 5, (13), and Hölder’s inequality,

(nωnc0)
p
nMp(X)

=
[

1
nωn

∫
Sn−1

E(|u ·X|p)−
n
p du

]− p
n

≤ 1
nωn

∫
Sn−1

E(|u ·X|p) du

=
ωn,p

nωn
E(|X|p).

The equality condition follows by the equality condition of
Hölder’s inequality.

By the theorem above and (7), we get the following.
Corollary 9: If Z is the standard generalized Gaussian, then

Mp(Z) = n.
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VII. AFFINE p-TH MOMENT-ENTROPY INEQUALITIES

A. Proof of Theorem 1

The following bilinear moment-entropy inequality is estab-
lished in [31].

Theorem 10: Let p ≥ 1, λ > n/(n + p). There exists a
constant c > 0 such that if X and Y are independent random
vectors in Rn with finite p-th moments, then

E(|X · Y |p) ≥ cNλ(X)pNλ(Y )p,

with equality holding if and only if X and Y are certain
generalized Gaussians.

We use this theorem to establish the following affine
moment-entropy inequality, which is Theorem 1.

Theorem 11: If p ∈ [1,∞), λ ∈ (n/(n+ p),∞), and X is
a random vector in Rn with finite λ-Rényi entropy and p-th
moment, then

Mp(X)
Nλ(X)p

≥ Mp(Z)
Nλ(Z)p

, (17)

with equality if and only if X is a generalized Gaussian.
Proof: If Y is independent of X and has finite p-th

moment and Rényi entropy power Nλ(Y ) = c1, then by (10)
and Theorem 10,

E(‖X‖p
Y,p) = E(|X · Y |p)

≥ c cp1Nλ(X)p.

The desired inequality (17) now follows by the definition (11)
of Mp(X). The equality condition follows by the equality
conditions of Lemma 4 and Theorem 10 (or (7) and Corollary
9).

B. Affine implies Euclidean

Proposition 12: The affine moment-entropy inequality in
Theorem 11 is stronger than the Euclidean moment-entropy
inequality in Theorem 2.

Proof: Observe that equality holds in Lemma 8 for a
standard generalized Gaussian random vector Z because it
is spherically contoured. By Lemma 8, Theorem 11, and the
equality condition of Lemma 8,

E(|X|p)
Nλ(X)p

≥ Mp(X)
Nλ(X)p

≥ Mp(Z)
Nλ(Z)p

=
E(|Z|p)
Nλ(Z)p

.

Therefore, the Euclidean moment-entropy inequality in Theo-
rem 2 is weaker than the affine moment-entropy inequality in
Theorem 11.
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