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Abstract. Two new approaches are presented to establish the existence of polytopal so-
lutions to the discrete-data Lp Minkowski problem for all p > 1.

As observed by Schneider [21], the Brunn-Minkowski theory springs from joining the notion
of ordinary volume in Euclidean d-space, Rd, with that of Minkowski combinations of convex
bodies.

One of the cornerstones of the Brunn-Minkowski theory is the classical Minkowski problem.
For polytopes the problem asks for the necessary and sufficient conditions on a set of unit
vectors u1, . . . , un ∈ Sd−1 and a set of real numbers α1, . . . , αn > 0 that guarantee the
existence of a polytope, P , in Rd with n facets whose outer unit normals are u1, . . . , un

and such that the facet whose outer unit normal is ui has area (i.e., (d − 1)-dimensional
volume) αi. This problem was completely solved by Minkowski himself (see Schneider [21]
for reference): If the unit vectors do not lie on a closed hemisphere of Sd−1, then a solution
exists if and only if

n∑
i=0

αiui = 0.

In addition, the solution is unique up to a translation.
In the middle of the last century, Firey (see Schneider [21] for references) extended the

notion of a Minkowski combination of convex bodies and for each real p > 1 defined what are
now called Firey-Minkowski Lp combinations of convex bodies. A decade ago, in [11], Firey-
Minkowski Lp combinations were combined with volume and the result was an embryonic
Lp Brunn-Minkowski theory — often called the Brunn-Minkowski-Firey theory. During the
past decade various elements of the Lp Brunn-Minkowski theory have attracted increased
attention (see e.g. [3], [4], [5], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [22],
[23], [24], [25], [26], [27]).

A central problem within the Lp Brunn-Minkowski theory is the Lp Minkowski problem. A
solution to the Lp Minkowski problem when the data is even was given in [11]. This solution
turned out to be a critical ingredient in the recently established Lp affine Sobolev inequality
[17].

Suppose the real index p is fixed. The Lp Minkowski problem for polytopes asks for the
necessary and sufficient conditions on a set of unit vectors u1, . . . , un ∈ Sd−1 and a set of
real numbers α1, . . . , αn > 0 that guarantee the existence of a polytope, P , in Rd containing
the origin in its interior with n facets whose outer unit normals are u1, . . . , un ∈ Sd−1 and
such that if the facet with outer unit normal ui has area ai and distance from the origin hi,
then for all i,

h1−p
i ai = αi.
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Obviously, the case p = 1 is the classical problem. For p > 1 uniqueness was established
in [11]. The Lp Minkowski problem for polytopes is the discrete-data case of the general Lp

Minkowski problem (described below).
In the discrete even-data case of the problem, outer unit normals u1, u−1, . . . , um, u−m are

given in antipodal pairs, where u−i = −ui, and α−i = αi. With the exception of the case
p = d, existence (and uniqueness) for the even problem was established in [11] for all cases
where the unit vectors do not lie in a closed hemisphere of Sd−1. A normalized version
(discussed below) of the problem was proposed and completely solved for p > 1 and even
data in [18]. For d = 2, the important case p = 0 of the discrete-data Lp Minkowski problem
was dealt with by Stancu [24], [25].

A solution to the Lp Minkowski problem for p > d was given by Guan and Lin [8] and
independently by Chou and Wang [5]. The work of Chou and Wang [5] goes further and
solves the problem for polytopes for all p > 1.

The works of Guan and Lin [8] and Chou and Wang [5] focus on existence and regularity
for the Lp Minkowski problem. Both works make use of the machinery of the theory of
PDE’s. The classical Minkowski problem has proven to be of interest to those working in
both discrete and computational geometry. It is likely that the Lp extension of the problem
will in time prove to be of interest to those working in these fields as well. An approach
accessible to researchers in convex, discrete, and computational geometry appears to be
desirable. This article presents two such approaches.

We begin by recalling the formulation of the Lp Minkowski problem in full generality. For
a convex body K let hK = h(K, · ) : Rd → R denote the support function of K; i.e., for
x ∈ Rd, let hK(x) = maxy∈K〈x, y〉, where 〈x, y〉 is the standard inner product of x and y in
Rd. We shall use V (K) to denote d-dimensional volume of a convex body K in Rd.

The surface area measure, S(K, · ), of the convex body K is a Borel measure on the unit
sphere, Sd−1, such that

lim
ε→0+

V (K + εQ)− V (K)

ε
=

∫
Sd−1

hQ(u) S(K, du),

for each convex body Q. Here K + εQ is the Minkowski combination defined by

h(K + εQ, · ) = h(K, · ) + εh(Q, · ).

Existence of the surface area measure was shown by Aleksandrov and Fenchel and Jessen
(see Schneider [21]).

The classical Minkowski problem asks for necessary and sufficient conditions for a Borel
measure µ on Sd−1 (called the data) to be the surface area measure of a convex body K. The
solution as obtained by Aleksandrov and Fenchel and Jessen (see Schneider [21]) is: Corre-
sponding to each Borel measure µ on Sd−1 that is not concentrated on a closed hemisphere
of Sd−1, there is a convex body K such that

S(K, · ) = µ

if and only if ∫
Sd−1

u dµ(u) = 0.
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The uniqueness of K (up to translation) is a direct consequence of the Minkowski mixed-
volume inequality (see Schneider [21]) which states that for convex bodies K, L,

lim
ε→0+

V (K + εQ)− V (K)

ε
≥ dV (K)(d−1)/dV (L)1/d,

with equality if and only if K is a dilate of L (after a suitable translation).
Suppose p > 1 is fixed and K is a convex body that contains the origin in its interior. The

Lp surface area measure, Sp(K, · ), of K is a Borel measure on Sd−1 such that

lim
ε→0+

V (K +p ε ·Q)− V (K)

ε
=

1

p

∫
Sd−1

hp
Q(u) Sp(K, du),

for each convex body Q that contains the origin in its interior. Here K +p ε · Q is the
Minkowski-Firey Lp combination defined by

h(K +p ε ·Q, · )p = h(K, · )p + εh(Q, · )p.

Existence of the Lp surface area measure was shown in [11] where it was also shown that

Sp(K, · ) = h1−p
K S(K, · ).

It is easily seen that the surface area measure of a convex body (and hence also all the Lp

surface area measures) cannot be concentrated on a closed hemisphere of Sd−1.
It turns out that if P is a polytope with outer unit facet normals u1, . . . , un, then

{u1, . . . , un} is the support of the measure S(P, · ) and S(P, {ui}) = ai where as before
ai denotes the area of the facet of P whose outer unit normal is ui. Thus, if P contains the
origin in its interior,

Sp(P, {ui}) = h1−p
i ai,

where as before hi = h(P, ui).
The Lp Minkowski problem asks for necessary and sufficient conditions for a Borel measure

µ on Sd−1 (called the data for the problem) to be the Lp surface area measure of a convex
body K; i.e., given a Borel measure µ on Sd−1 that is not concentrated on a closed hemisphere
of Sd−1, what are the necessary and sufficient conditions for the existence of a convex body
K that contains the origin in its interior such that

Sp(K, · ) = µ

or equivalently,
h1−p

K S(K, · ) = µ.

The problem is of interest for all real p.
For p > 1, but p 6= d, the uniqueness of K is a direct consequence of the Lp Minkowski

mixed-volume inequality (established in [11]) which states that if p > 1 then for convex bodies
K, L, that contain the origin in their interior

lim
ε→0+

V (K +p ε ·Q)− V (K)

ε
≥ d

p
V (K)(d−p)/dV (L)p/d,

with equality if and only if K is a dilate of L.
In [11] it was shown that if µ is an even Borel measure (i.e., assumes the same values on

antipodal Borel sets) that is not concentrated on a great subsphere of Sd−1, then for each
p > 1, there exists a unique convex body Kp, that is symmetric about the origin such that

Sp(Kp, · ) = µ,
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provided p 6= d. The Lp Minkowski problem as originally formulated cannot be solved for all
even measures when p = d. The following normalized version of the Lp Minkowski problem
was formulated in [18]: What are the necessary and sufficient conditions on a Borel measure
µ to guarantee the existence of a convex body K∗

p , containing the origin in its interior, such
that

1

V (K∗
p)

Sp(K
∗
p , · ) = µ?

For all real p 6= d the two versions of the problems are equivalent in that

Kp = V (K∗
p)1/(p−d)K∗

p

or equivalently

K∗
p = V (Kp)

−1/pKp.

It was shown in [18] that the normalized Lp Minkowski problem has a solution for all p > 1
if the data measure is even (again assuming the measure is not concentrated on a subsphere
of Sd−1).

It is the aim of this note to present two alternate approaches to the Minkowski problem
which show that when the data is a discrete measure, the normalized version of the Lp

Minkowski problem always has a solution (assuming, as usual, that the measure is not
concentrated on a closed hemisphere of Sd−1). It is important to emphasize that all of
our results for p > d were first obtained by Guan and Lin [8] and independently by Chou
and Wang [5], and our results for p > 1, were first obtained by Chou and Wang [5]. The
sole aim of our work is to present approaches easily accessible to the convex, discrete, and
computational geometry community.

1. Results

Let Kd denote the space of compact convex subsets of Rd with nonempty interiors, and
let Pd denote the subset of convex polytopes. The members of Kd are called convex bodies.
We write Kd

0 for the set of convex bodies which contain the origin as an interior point, and
put Pd

0 := Pd ∩ Kd
0.

For K ∈ Kd, let F (K, u) denote the support set of K with exterior unit normal vector
u, i.e. F (K, u) = {x ∈ K : 〈x, u〉 = h(K, u)}. The (d − 1)-dimensional support sets of a
polytope P ∈ Pd are called the facets of P . If P ∈ Pd has facets F (P, ui) with areas ai,
i = 1, . . . , n, then S(P, ·) is the discrete measure

S(P, ·) =
n∑

i=1

aiδui

with (finite) support {u1, . . . , un} and S(P, {ui}) = ai, i = 1, . . . , n; here δui
denotes the

probability measure with unit point mass at ui.
Just as the Lp surface area measure of a convex body K ∈ Kd

0 satisfies

Sp(K, ·) = h(K, ·)1−pS(K, ·),

the normalized Lp surface area measure of K is defined by

S∗p(K, ·) :=
h(K, ·)1−p

V (K)
S(K, ·).
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A convex body K is uniquely determined by its Lp surface area measure if p > 1 and p 6= d
(for p = d one has uniqueness up to a dilatation), uniqueness holds for the normalized Lp

surface area measure and all p > 1.
Again for a polytope P ∈ Pd

0 with outer unit facet normals u1, . . . , un and facet areas
a1, . . . , an > 0, i = 1, . . . , n, the discrete measures Sp(P, ·) and S∗p(P, ·) are given by

Sp(P, ·) =
n∑

i=1

h(P, ui)
1−paiδui

and

S∗p(P, ·) =
n∑

i=1

h(P, ui)
1−p

V (P )
aiδui

.

In the case of a discrete measure µ =
∑n

j=1 αjδuj
with unit vectors u1, . . . , un not contained

in a closed hemisphere and α1, . . . , αn > 0, any solution of the Lp Minkowski problem for the
data µ is necessarily a polytope with facet normals u1, . . . , un (cf. [21, Theorem 4.6.4]). The
main step in our approach to the Lp Minkowski problem for general measures and general
convex bodies is to solve first the Lp Minkowski problem for discrete measures and polytopes.

Theorem 1.1. Let vectors u1, . . . , un ∈ Sd−1 that are not contained in a closed hemisphere
and real numbers α1, . . . , αn > 0 be given. Then, for any p > 1, there exists a unique polytope
P ∈ Pd

0 such that
n∑

j=1

αjδuj
=

h(P, ·)1−p

V (P )
S(P, ·).

From Theorem 1.1, we deduce the corresponding result for the Lp Minkowski problem
involving discrete measures and polytopes.

Theorem 1.2. Let vectors u1, . . . , un ∈ Sd−1 that are not contained in a closed hemisphere
and real numbers α1, . . . , αn > 0 be given. Then, for any p > 1 with p 6= d, there exists a
unique polytope P ∈ Pd

0 such that

n∑
j=1

αjδuj
= h(P, ·)1−pS(P, ·).

The extension of Theorem 1.1 to general measures will be obtained by approximation
with discrete measures. For each approximating discrete measure, we get a polytope as the
solution of the discrete Lp Minkowski problem. Then we show that a subsequence of these
polytopes converges. However, the limit body may have the origin in its boundary. For this
reason we are forced to slightly modify the original problem. For p ≥ d, we finally show by
an additional argument that the original problem is solved as well.

Theorem 1.3. Let µ be a Borel measure on Sd−1 whose support is not contained in a closed
hemisphere of Sd−1. Then, for any p > 1, there exists a unique convex body K ∈ Kd with
0 ∈ K such that

V (K)h(K, ·)p−1µ = S(K, ·);
moreover, K ∈ Kd

0 if p ≥ d.
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Theorem 1.4. Let µ be a Borel measure on Sd−1 whose support is not contained in a closed
hemisphere of Sd−1. Then, for any p > 1 with p 6= d, there exists a unique convex body
K ∈ Kd with 0 ∈ K such that

h(K, ·)p−1µ = S(K, ·);
moreover, K ∈ Kd

0 if p > d.

2. Volume and diameter bounds

The following three lemmas will be applied in two different ways. On the one hand, we
will need them for our first treatment of the Lp Minkowski problem for discrete measures
and polytopes which is based on Aleksandrov’s mapping lemma (cf. [1]). Here the lemmas
are applied in the very special situation where all convex bodies are polytopes containing
the origin in their interiors and with the same set of outer unit facet normals and where all
measures are discrete with common finite support. Except for Lemma 2.1, the proofs of the
lemmas in this special case will not be simpler than the ones in the general case. Therefore
we present them in the general framework. Then again Lemmas 2.1 – 2.3 will be required
for the solution of the Lp Minkowski problem in the case of general convex bodies via an
approximation argument.

The next lemma provides a uniqueness result which will be used to establish the injectivity
of an auxiliary map (cf. Lemma 3.1) in our first proof of Theorem 1.1. It also yields the
uniqueness assertions of Theorems 1.1 and 1.3. Moreover, an estimate established in the
course of the proof of Lemma 2.1 will be employed in the proof of Lemma 2.2.

Lemma 2.1. Let K, K ′ ∈ Kd be convex bodies with 0 ∈ K, K ′. Assume that µ is a Borel
measure on Sd−1 such that V (K)h(K, ·)p−1µ = S(K, ·) and V (K ′)h(K ′, ·)p−1µ = S(K ′, ·).
Then K = K ′.

Proof. Let L ∈ Kd with 0 ∈ L. Define Ω := {u ∈ Sd−1 : h(K, u) > 0} and Ωc := Sd−1\Ω.
Then Hölder’s inequality and the assumption p > 1 yield that(

1

d

∫
Sd−1

h(L, u)pµ(du)

) 1
p

≥
(∫

Ω

(
h(L, u)

h(K, u)

)p
h(K, u)S(K, du)

dV (K)

) 1
p

≥
∫

Ω

h(L, u)

h(K, u)

h(K, u)S(K, du)

dV (K)

=
V1(K, L)

V (K)
,(1)

since
1

d

∫
Ω

h(K, u)S(K, du) =
1

d

∫
Sd−1

h(K, u)S(K, du) = V (K)

and

S(K, Ωc) = V (K)

∫
Ωc

h(K, u)p−1µ(du) = 0.

For L = K or L = K ′ the left-hand side of (1) is equal to 1. Hence (1) and Minkowski’s
inequality (see [21, Theorem 6.2.1]) imply that

1 ≥ V1(K, K ′)

V (K)
≥
(

V (K ′)

V (K)

) 1
d

,
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and therefore V (K) ≥ V (K ′). By symmetry, we also have V (K) = V (K ′), and thus K =
K ′ + t for some t ∈ Rd. The assumption and the translation invariance of the surface area
measure now yield that∫

U

[
h(K ′ + t, u)p−1 − h(K ′, u)p−1

]
µ(du) = 0

for all Borel sets U ⊂ Sd−1. In particular, we may choose Ut := {u ∈ Sd−1 : 〈t, u〉 > 0}. If
t 6= 0, then Ut is an open hemisphere. Since the support of µ is not contained in Sd−1 \ Ut,
we thus get ∫

Ut

[
(h(K ′, u) + 〈t, u〉)p−1 − h(K ′, u)p−1

]
µ(du) > 0.

This shows that necessarily t = 0. �

In the following two lemmas we provide a priori bounds for the volume and the diameter
of solutions of the Lp Minkowski problem.

Lemma 2.2. Let µ be a positive Borel measure on Sd−1, and let K ∈ Kd with 0 ∈ K satisfy
V (K)h(K, ·)p−1µ = S(K, ·). Then

V (K) ≥ κd

(
d

µ(Sd−1)

) d
p

.

Proof. Apply (1) with L = Bd and use Minkowski’s inequality (i.e. the isoperimetric
inequality in this case) to get (

1

d
µ(Sd−1)

) 1
p

≥
(

κd

V (K)

) 1
d

,

which is equivalent to the assertion of the lemma. �

Subsequently, we set α+ := max{0, α} for α ∈ R. Let Bd(0, r) denote the ball with center
0 and radius r ≥ 0.

Lemma 2.3. Let µ and K be given as in Lemma 2.2. Assume that for some constant c0 > 0,∫
Sd−1

〈u, v〉p+ µ(du) ≥ d

cp
0

for all v ∈ Sd−1.

Then K ⊂ Bd(0, c0).

Proof. Define R := max{h(K, v) : v ∈ Sd−1} and choose v0 ∈ Sd−1 so that R = h(K, v0).
Then R[0, v0] ⊂ K, and thus R〈u, v0〉+ ≤ h(K, u) for u ∈ Sd−1. Hence

Rp

cp
0

≤ Rp 1

d

∫
Sd−1

〈u, v0〉p+ µ(du) ≤ 1

d

∫
Sd−1

h(K,u)pµ(du)

=
1

d

∫
Sd−1

h(K,u)h(K, u)p−1µ(du)

=
1

dV (K)

∫
Sd−1

h(K,u)S(K, du) = 1,

which gives R ≤ c0. �
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3. The Lp Minkowski problem for polytopes

In this section, we will describe two different approaches to Theorem 1.1. The first proof
is based on the following auxiliary result, which is a minor modification of Aleksandrov’s
mapping lemma. We include the proof for the sake of completeness. Note that Aleksandrov
used his mapping lemma to solve the classical Minkowski problem for polytopes.

Lemma 3.1. Let A, B ⊂ Rn be nonempty open sets, let B be connected, and let ϕ : A → B
be an injective, continuous map. Assume that any sequence (xi)i∈N in A with ϕ(xi) → b ∈ B
as i →∞ has a convergent subsequence. Then ϕ is surjective.

Proof. Since ϕ(A) ⊂ B is nonempty, it is sufficient to show that ϕ(A) is open and closed
in B.

Let bi ∈ ϕ(A), i ∈ N, with bi → b ∈ B as i → ∞ be given. Then there are xi ∈ A such
that ϕ(xi) = bi for i ∈ N. By assumption, there is a subsequence (xij)j∈N with xij → x ∈ A
as j → ∞. Since ϕ is continuous, ϕ(xij) → ϕ(x) and therefore b = ϕ(x). Hence ϕ(A) is
closed in B.

Since A is open in Rn and ϕ is continuous and injective, ϕ(A) is open in B by the theorem
of the invariance of domain (cf. [20, Theorem 36.5] or [6, Theorem 4.3]). �

In the following, we write H−
u,t := {y ∈ Rd : 〈y, u〉 ≤ t} for the halfspace with (exterior)

normal vector u ∈ Sd−1 and distance t ≥ 0 from the origin.

For our first proof of Theorem 1.1, we can assume that the given vectors u1, . . . , un are
pairwise distinct and not contained in a closed hemisphere. Let Rn

+ be the set of all x =
(x1, . . . , xn) ∈ Rn with positive components. For x ∈ Rn

+, we define the (compact, convex)
polytope

P (x) :=
n⋂

j=1

H−
uj ,xj

.

The compactness of P (x) is implied by the assumption that u1, . . . , un are not contained in
a closed hemisphere. Since x ∈ Rn

+, 0 is an interior point of P (x). Further, we remark that
x 7→ P (x), x ∈ Rn

+, is continuous with respect to the Hausdorff metric (cf. [21, p. 57]). We
put B := Rn

+ and define

A := {x ∈ Rn
+ : S(P (x), {uj}) > 0 for j = 1, . . . , n}.

Note that if x ∈ A, then xj = h(P (x), uj) for j = 1, . . . , n. Clearly, A, B are nonempty open
subsets of Rn and B is connected. Next we define the map ϕ : A → B by ϕ(x) := b =
(b1, . . . , bn) with

bj :=
h(P (x), uj)

1−p

V (P (x))
S(P (x), {uj}) = S∗p(P (x), {uj}), j = 1, . . . , n.

We will show that ϕ satisfies the assumptions of Lemma 3.1 to conclude that ϕ is surjective.
The map ϕ is well-defined and continuous. The continuity of ϕ follows from the continuity
of the volume and the support function and from the weak continuity of the surface area
measure, since x 7→ P (x) is continuous as well. Next we check that ϕ is injective. Let
x, y ∈ A be such that ϕ(x) = ϕ(y). Then Lemma 2.1 yields that P (x) = P (y). Hence, by
the definition of A, xj = h(P (x), uj) = h(P (y), uj) = yj for j = 1, . . . , n, and thus x = y.
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Now let xi ∈ A, i ∈ N, be given. Assume that bi := ϕ(xi) → b ∈ B as i → ∞ and put
µi := S∗p(P (xi), ·) for i ∈ N. Since

µi(S
d−1) =

n∑
j=1

µi({uj}) =
n∑

j=1

bi
j →

n∑
j=1

bj

as i → ∞, we get that µi(S
d−1) ≤ c1 < ∞ for all i ∈ N. Hence, by Lemma 2.2 there is a

constant c2 > 0 such that, for i ∈ N,

(2) V (P (xi)) ≥ c2 > 0.

For the discrete measure µ :=
∑n

j=1 bjδuj
we have µi → µ weakly as i →∞. The functions

fi, f defined by

fi(v) :=

∫
Sd−1

〈u, v〉p+µi(dv), f(v) :=

∫
Sd−1

〈u, v〉p+µ(dv),

v ∈ Sd−1, are continuous and positive since the support of µi, µ is not contained in a closed
hemisphere. Since fi converges uniformly to f as i →∞ and the sphere is compact, there is
a constant c3 > 0 such that fi(v) ≥ c3 for all v ∈ Sd−1 and i ∈ N. Lemma 2.3 now implies
that there is a constant c4 such that, for i ∈ N,

(3) P (xi) ⊂ Bd(0, c4).

By (3) there exists a convergent subsequence of P (xi), i ∈ N. To simplify the notation, we
assume that P (xi) → P ∈ Pd as i →∞. Note that by (2) P has indeed nonempty interior.
Clearly, 0 ∈ P and the facets of P are among the support sets F (P, u1), . . . , F (P, un) of P
with normal vectors u1, . . . , un. We next show that 0 ∈ int(P ). For this, assume that 0 is a
boundary point of P . Then there is a facet F (P, uj) of P with 0 ∈ F (P, uj) and S(P, {uj}) >
0, and therefore h(P, uj) = 0 . But then h(P (xi), uj) → 0 and S(P (xi), {uj}) 6→ 0, as i →∞.
In view of (3) this implies that

bi
j = V (P (xi))−1 S(P (xi), {uj})

h(P (xi), uj)p−1
→∞

as i →∞, a contradiction.
Since 0 ∈ int(P ), we get that h(P (xi), uj) 6→ 0 as i → ∞, for j = 1, . . . , n, and therefore

also S(P (xi), {uj}) 6→ 0; here we also use (2) and bi
j → bj 6= 0 as i →∞. This finally shows

that S(P, {uj}) > 0 for j = 1, . . . , n.
Thus we conclude that P = P (x) for x := (h(P, u1), . . . , h(P, un)) ∈ A and xi → x as

i →∞.
Now Lemma 3.1 shows that ϕ is surjective, which implies the existence assertion of the

theorem. Uniqueness has already been established in Lemma 2.1. �

We now give a second, variational proof of Theorem 1.1. An obvious advantage of this
approach is that it may be turned into a nonlinear reconstruction algorithm for retrieving a
convex polytope from its Lp surface area measure. The main difficulty consists in showing
that the solution of an auxiliary optimization problem is a convex polytope which contains
the origin in its interior.
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The following lemma is probably well known. It will be used to verify that a convex
polytope which is defined as the solution of an auxiliary optimization problem is indeed the
solution of the Lp Minkowski problem stated in Theorem 1.1.

Lemma 3.2. Let u1, . . . , un ∈ Sd−1 be pairwise distinct vectors which are not contained in
a closed hemisphere. For x ∈ Rn

+, let P (x) :=
⋂n

i=1 H−
ui,xi

and Ṽ (x) := V (P (x)). Then Ṽ is

of class C1 and ∂iṼ (x) = S(P (x), {ui}) for i = 1, . . . , n.

Proof. The second assertion can be checked by a direct argument. Alternatively, it
can be obtained as a very special case of Theorem 6.5.3 in [21]. Here one has to choose
Ω = {u1, . . . , un}, a positive, continuous function f : Sd−1 → R with f(uj) = xj, and a
continuous function gi : Sd−1 → R with gi(uj) = δij, for j = 1, . . . , n. The first assertion then
follows, since x 7→ S(P (x), {ui}) is continuous on Rn

+ (cf. the first proof of Theorem 1.1). �

We start with the second proof of Theorem 1.1. Again we can assume that u1, . . . , un are
pairwise distinct unit vectors not contained in a closed hemisphere. Let α1, . . . αn > 0 be
fixed. We denote by Rn

? the set of all x = (x1, . . . , xn) ∈ Rn with nonnegative components.
Then we define the compact set

M := {x ∈ Rn
? : φ(x) = 1},

where

φ(x) :=
1

d

n∑
i=1

αix
p
i .

For x ∈ M , we again write P (x) for the convex polytope defined by

P (x) :=
n⋂

i=1

H−
ui,xi

.

Clearly, for any x ∈ M , 0 ∈ P (x) and P (x) has at most n facets whose outer unit normals
are from the set {u1, . . . , un}. Moreover, h(P (x), ui) ≤ xi with equality if S(P (x), {ui}) > 0,
for i = 1, . . . , n. Since M is compact and the function x 7→ V (P (x)) =: Ṽ (x), x ∈ M , is
continuous, there is a point z ∈ M such that Ṽ (x) ≤ Ṽ (z) for all x ∈ M . We will prove that
P (z) is the required polytope.

First, we show that

(4) 0 ∈ int(P (z)).

This will be proved by contradiction. Let hi := h(P (z), ui) for i = 1, . . . , n. Without loss of
generality, assume that h1 = . . . = hm = 0 and hm+1, . . . , hn > 0 for some 1 ≤ m < n. Note
that m < n is implied by Ṽ (z) > 0. We will show that under this assumption there is some
zt ∈ M such that Ṽ (zt) > Ṽ (z), which contradicts the definition of z. Pick a small t > 0
and consider

zt :=
(
(zp

1 + tp)
1
p , . . . , (zp

m + tp)
1
p ,
(
zp

m+1 − αtp
) 1

p , . . . , (zp
n − αtp)

1
p

)
,

where

α :=

∑m
i=1 αi∑n

i=m+1 αi

.

Since 0 < hi ≤ zi for m + 1 ≤ i ≤ n, we have zt ∈ M if t > 0 is sufficiently small.
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Define

Pt :=
m⋂

i=1

H−
ui,t

∩
n⋂

i=m+1

H−
ui,(hp

i−αtp)
1/p ,

hence P0 = P (z), Pt ⊂ P (zt) and 0 ∈ int(Pt), if t > 0 is sufficiently small. We put

fi := S(P (z), {ui}) and ∆i(t) := S(Pt, {ui})− fi,

and thus

dV (Pt) = t

m∑
i=1

(fi + ∆i(t)) +
n∑

i=m+1

(hp
i − αtp)

1
p (fi + ∆i(t))

and

dV1(Pt, P (z)) = 0
m∑

i=1

(fi + ∆i(t)) +
n∑

i=m+1

hi(fi + ∆i(t))

Since an interior point of P (z) is also an interior point of Pt, if t > 0 is sufficiently small,
it follows that Pt → P (z) as t → 0+ (cf. [21, p. 57]), and therefore ∆i(t) → 0 as t → 0+.
From this and since at least one facet is supposed to contain the origin, we deduce that

lim
t→0+

V (Pt)− V1(Pt, P (z))

t

=
1

d
lim

t→0+

(
m∑

i=1

t− 0

t
(fi + ∆i(t)) +

n∑
i=m+1

(hp
i − αtp)

1
p − hi

t
(fi + ∆i(t))

)

=
1

d

m∑
i=1

fi > 0.

Here the assumption p > 1 enters in a crucial way. By Minkowski’s inequality and since
P (t) → P (z) as t → 0+, we get

0 < lim
t→0+

V (Pt)− V1(Pt, P (z))

t
≤ lim inf

t→0+

V (Pt)− V (Pt)
1− 1

d V (P (z))
1
d

t

= V (P (z))1− 1
d lim inf

t→0+

V (Pt)
1
d − V (P (z))

1
d

t
.

But this shows that V (Pt) > V (P (z)) if t > 0 is sufficiently small. Since Pt ⊂ P (zt), the
required contradiction follows.

From (4) it follows that

z ∈ M+ := {x ∈ Rn
+ : φ(x) = 1},

and Ṽ (x) ≤ Ṽ (z) for all x ∈ M+. Hence, by the Lagrange multiplier rule there is some
λ ∈ R such that

∇Ṽ (z) = λ∇φ(z).

The required differentiability of Ṽ is ensured by Lemma 3.2, and ∇φ(z) 6= 0 since z ∈ Rn
+

and α1, . . . , αn > 0; moreover,

fi = λ
1

d
αipz

p−1
i , i = 1, . . . , n,
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and thus λ > 0, since fi > 0 for some i ∈ {1, . . . , n}. We deduce that fi > 0 and therefore
h(P (z), ui) = zi for all i = 1, . . . , n. Since φ(z) = 1, we obtain that

dV (P (z)) =
n∑

i=1

fizi = λp
1

d

n∑
i=1

αiz
p
i = λp.

This shows that, for i = 1, . . . , n,

S(P (z), {ui}) = fi =
d

p
V (P (z))

p

d
αiz

p−1
i = V (P (z))h(P (z), ui)

p−1αi > 0.

4. The general case

We now provide a proof of Theorem 1.3. Let µ be a Borel measure on Sd−1 whose support
is not contained in a closed hemisphere. As in [21, pp. 392-3], one can construct a sequence
of discrete measures µi, i ∈ N, such that the support of µi is not contained in a closed
hemisphere and µi → µ weakly as i → ∞. By Theorem 1.1, for each i ∈ N there exists a
polytope Pi ∈ Pd

0 with

µi =
h(Pi, ·)1−p

V (Pi)
S(Pi, ·).

As in the proof of (3), we now obtain that the sequence Pi, i ∈ N, is uniformly bounded.
Hence we can assume that Pi → K ∈ Kd as i → ∞ and 0 ∈ K. In fact, since µi(S

d−1) →
µ(Sd−1) as i →∞, we get as in the proof of (2) that V (K) > 0, and thus K ∈ Kd.

For a continuous function f ∈ C(Sd−1) and i ∈ N we have

(5)

∫
Sd−1

f(u)V (Pi)h(Pi, u)p−1µi(du) =

∫
Sd−1

f(u)S(Pi, du).

Since V (Pi)h(Pi, ·)p−1 → V (K)h(K, ·)p−1 uniformly on Sd−1 (note that p− 1 > 0), and since
µi → µ and S(Pi, ·) → S(K, ·) weakly, as i →∞, we obtain from (5) that

(6)

∫
Sd−1

f(u)V (K)h(K, u)p−1µ(du) =

∫
Sd−1

f(u)S(K, du).

The existence assertion now follows, since (6) holds for any f ∈ C(Sd−1).
Uniqueness has been proved in Lemma 2.1.
Now we consider the case p ≥ d. Assume that K ∈ Kd with 0 ∈ K satisfies

V (K)h(K, ·)p−1µ = S(K, ·), but 0 ∈ ∂K. We will derive a contradiction by adapting an
argument from [5].

Let e ∈ Sd−1 be such that ∂K can locally be represented as the graph of a convex function
over Br := e⊥ ∩ Bd(0, r), r > 0, and K ⊂ H−

−e,0 (cf. [2, Theorem 1.12]). Let µi and Pi ∈ Pd
0

be constructed for µ as in the first part of the proof. In particular, µi(S
d−1) ≤ c5 < ∞ and

0 ∈ int(Pi), for all i ∈ N, and Pi → K as i → ∞ with respect to the Hausdorff metric.
Then, for i ≥ i0, ∂Pi can locally be represented as the graph of a convex function gi over
Br, and the Lipschitz constants of these functions are uniformly bounded by some constant
L. We define Gi(y) := y + gi(y)e for y ∈ Br, put α := p− 1 and write c6, c7, c8 for constants
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independent of i and r. Then, for i ≥ i0,

c5 ≥ µi(S
d−1) =

1

V (Pi)

∫
Sd−1

h(Pi, u)−αS(Pi, du)

≥ c6

∫
Gi(Br)

〈x, σ(Pi, x)〉−αHd−1(dx),

where Hd−1 denotes the (d − 1)-dimensional Hausdorff measure and σ(Pi, x) is an exterior
unit normal vector of Pi at x ∈ ∂Pi, which is uniquely determined for Hd−1-almost all
x ∈ ∂Pi. Using the area formula and the fact that

σ(Pi, Gi(y)) =
(
1 + |∇gi(y)|2

)− 1
2 (∇gi(y)− e) ,

for Hd−1-almost all y ∈ Br, we obtain

c5 ≥ c6

∫
Br

〈Gi(y), σ(Pi, Gi(y))〉−α
√

1 + |∇gi(y)|2Hd−1(dy)

= c6

∫
Br

(〈y,∇gi(y)〉 − gi(y))−α
√

1 + |∇gi(y)|2
1−α

Hd−1(dy)

≥ c7

∫
Br

(〈y,∇gi(y)〉 − gi(y))−αHd−1(dy).

Since
0 < 〈y,∇gi(y)〉 − gi(y) ≤ 2L|y|+ |gi(0)|,

we further deduce that

c5 ≥ c7

∫
Br

(2L|y|+ |gi(0)|)−αHd−1(dy) = c8

∫ r

0

(2Lt + |gi(0)|)−α td−2dt.

Since |gi(0)| → 0 as i → ∞, we can extract a decreasing subsequence of (|gi(0)|)i∈N. Hence
the monotone convergence theorem yields that

c5 ≥ c8

∫ r

0

(2Lt)−αtd−2dt.

This leads to a contradiction if α ≥ d− 1, since r > 0 can be arbitrarily small. �

Example 4.1. We now give an example of a Borel measure µ on Sd−1 whose support is
not contained in a hemisphere such that 0 is a boundary point of the uniquely determined
convex body K ∈ Kd for which V (K)h(K, ·)p−1µ = S(K, ·). For q > 1 we define g(x) := |x|q
for x ∈ Rd−1 and

K := {(x, t) ∈ Rd−1 × R : t ≥ g(x)} ∩H−
ed,1.

Clearly, K ∈ Kd, 0 ∈ ∂K and ∂K is C2 in a neighbourhood of 0 excluding 0. The given
convex body satisfies V (K)h(K, ·)p−1µ = S(K, ·) if

µ :=
h(K, ·)1−p

V (K)
S(K, ·)

defines a finite measure on Sd−1 and S(K, {−ed}) = 0. Since indeed S(K, {−ed}) = 0 and
h(K, u) > 0 for u ∈ Sd−1 \ {−ed}, and since S(K, ·) is absolutely continuous with respect to
the spherical Lebesgue measure (with density function fK) in a spherical neighbourhood of



14 DANIEL HUG, ERWIN LUTWAK, DEANE YANG, AND GAOYONG ZHANG

−ed, it remains to show that h(K, ·)1−pfK is integrable in a spherical neighbourhood of −ed.
For r ∈ (0, 1) we put Br := Bd(0, r) ∩ e⊥d . Then we define

a(x) := (1 + |∇g(x)|2)1/2, x ∈ Br,

where ∇g(x) = q|x|q−2x. For x ∈ Br \ {0} and

u := σ(K, (x, g(x))) = a(x)−1(∇g(x)− ed),

we get
h(K, u) = 〈x + g(x)ed, u〉 = a(x)−1(q − 1)|x|q,

fK(u)−1 = a(x)−(d+1) det
(
d2g(x)

)
,

and hence
h(K, u)1−pfK(u) = (q − 1)1−pa(x)d+p|x|q(1−p)

[
det
(
d2g(x)

)]−1
.

A direct computation shows that

det
(
d2g(x)

)
= qd−1(q − 1)|x|(q−2)(d−1),

and therefore

h(K, u)1−pfK(u) = q1−d(q − 1)−p|x|−[(q−2)(d−1)+q(p−1)]a(x)d+p

For a given p ∈ (1, d), we now choose

q :=
2(d− 1)

d + p− 2
∈ (1, 2),

and hence
h(K, u)1−pfK(u) = q1−d(q − 1)−pa(x)d+p.

Since x 7→ a(x) is bounded on Br, the required integrability follows.
A more precise estimate shows that h(K, ·)1−pfK is integrable whenever

q > 1 and p <
d− 1 + q

q
.

For q = 2, K is C2 and has positive curvature at 0 and h(K, ·)1−pfK is integrable for
1 < p < (d + 1)/2.
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