A SIMPLE PROOF OF HERON'S FORMULA FOR THE AREA OF A TRIANGLE
 DEANE YANG

I learned following proof of Heron's formula from Daniel Rokhsar.
Theorem 1. The area of a triangle with side lengths a, b, c is equal to

$$
\begin{equation*}
A(a, b, c)=\sqrt{s(s-a)(s-b)(s-c)} \tag{1}
\end{equation*}
$$

where

$$
s=\frac{a+b+c}{2} .
$$

Proof. First, observe that the domain of A is the open set

$$
\{(a, b, c): a, b, c>0, b+c-a>0, c+a-b>0, a+b-c>0\} .
$$

Next, we show that A^{2} is a polynomial function of a, b, c.

The following equations hold:

$$
\begin{aligned}
h^{2}+(c-x)^{2} & =a^{2} \\
h^{2}+x^{2} & =b^{2} .
\end{aligned}
$$

Subtracting these equations, we get

$$
\begin{aligned}
b^{2}-a^{2} & =x^{2}-(c-x)^{2} \\
& =c(2 x-c)
\end{aligned}
$$

and therefore

$$
c x=\frac{1}{2}\left(b^{2}+c^{2}-a^{2}\right) .
$$

It follows that

$$
\begin{align*}
A^{2} & =\frac{1}{4} c^{2} h^{2} \\
& =\frac{1}{4} c^{2}\left(b^{2}-x^{2}\right) \\
& =\frac{1}{4}\left(b^{2} c^{2}-(c x)^{2}\right) \\
& =\frac{1}{4}\left(b^{2} c^{2}-\frac{1}{4}\left(b^{2}+c^{2}-a^{2}\right)^{2}\right) . \tag{2}
\end{align*}
$$

Date: July 22, 2020.

It follows that A^{2} is a fourth degree homogeneous polynomial in a, b, c. Since the function A^{2} is a symmetric function of a, b on an open subset on \mathbb{R}^{3}, it must also be a symmetric polynomial.

It is now a straightforward but tedious algebraic calculation to show that (2) is equivalent to (1). Below is an alternative proof that avoids this calculation.

If $a=b+c, b=c+a$, or $c=a+b$, then $A(a, b, c)=0$. It follows that A^{2} can be factored as

$$
A^{2}=f(a, b, c)(b+c-a)(c+a-b)(a+b-c) .
$$

where f is a symmetric polynomial of degree 1 . The only such polynomials are of the form

$$
f(a, b, c)=C(a+b+c),
$$

where C is a constant. To determine the value of C, we can use any triangle whose area is easy to compute. Consider the equilateral triangle with sides of length 1 ,

On one hand,

$$
A=\frac{1}{2} c h=\frac{\sqrt{3}}{4}
$$

and, on the other hand,

$$
A^{2}=C(a+b+c)(b+c-a)(c+a-b)(a+b-c)=3 C .
$$

Therefore,

$$
C=\frac{1}{16},
$$

and

$$
A=\sqrt{\left(\frac{a+b+c}{2}\right)\left(\frac{b+c-a}{2}\right)\left(\frac{c+a-b}{2}\right)\left(\frac{a+b-c}{2}\right)} .
$$

