HOLONOMY IS CURVATURE

DEANE YANG

Let E be a vector bundle over a smooth manifold M and ∇ a connection on E. The curvature of the connection is the section Ω of $\bigwedge^{2} T^{*} M \otimes \operatorname{Aut}(E)$ such that

$$
\begin{equation*}
\Omega(X, Y) e=\left(\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}\right) e \in E_{x}, \tag{1}
\end{equation*}
$$

for any $x \in M, X, Y \in T_{x} M, e \in E_{x}$.
Given a smooth curve $c:[0,1] \rightarrow M$, the parallel transport of $e \in E_{c(0)}$ along c is defined to be the section $f:[0,1] \rightarrow E$ such that the following hold for each $t \in[0,1]$:

$$
\begin{aligned}
f(t) & \in E_{c(t)} \\
f(0) & =e \\
\nabla_{T} f(t) & =0,
\end{aligned}
$$

where $T=\partial_{t}$. Denote $P_{c} e=f(1)$.
Let $c:[0,1] \rightarrow M$ be a C^{1} null-homotopic curve based at x. There exists a C^{1} map $C:[0,1] \times[0,1] \rightarrow M$ satisfying the following for each $0 \leq s, t \leq 1$:

$$
\begin{aligned}
& C(0, t)=x \\
& C(1, t)=c(t) \\
& C(s, 0)=x \\
& C(s, 1)=x
\end{aligned}
$$

Given $e_{x} \in E_{x}$, let $e:[0,1] \times[0,1] \rightarrow E$ be C^{2} section of $C^{*} E$ satisfying the following for all $0 \leq s, t \leq 1$:

$$
\begin{aligned}
e(s, t) & \in E_{C(s, t)} \\
e(s, 0) & =e_{x} \\
\nabla_{T} e(1, t) & =0 \\
\nabla_{S} e(s, t) & =0,
\end{aligned}
$$

where $S=\partial_{s}$ and $T=\partial_{t}$. In particular,

$$
e(s, 1)=P_{c} e_{x}
$$

Let E^{*} be the dual vector bundle of E. Given $\varepsilon_{x} \in E_{x}^{*}$, let $\varepsilon:[0,1] \times[0,1] \rightarrow E^{*}$ satisfy the following for all $0 \leq s, t \leq 1$:

$$
\begin{aligned}
\varepsilon(s, t) & \in E_{C(s, t)}^{*} \\
\varepsilon(0, t) & =\varepsilon_{x} \\
\varepsilon(s, 0) & =\varepsilon_{x} \\
\varepsilon(s, 1) & =\varepsilon_{x} \\
\nabla_{S} \varepsilon(s, t) & =0 .
\end{aligned}
$$

It follows that

$$
\nabla_{T} \varepsilon(0, t)=0
$$

Lemma 1.

$$
\left\langle\varepsilon_{x}, P_{c} e_{x}-e_{x}\right\rangle=\int_{[0,1] \times[0,1]}\left\langle\varepsilon(s, t), C^{*} \Omega e\right\rangle
$$

Proof.

$$
\begin{aligned}
\left\langle\varepsilon_{x}, P_{c} e_{x}-e_{x}\right\rangle & =\langle\varepsilon(0,1), e(0,1)\rangle-\langle\varepsilon(0,0), e(0,0)\rangle \\
& =\int_{t=0}^{t=1} \partial_{t}(\langle\varepsilon(0, t), e(0, t)\rangle) d t \\
& =\int_{t=0}^{t=1}\left\langle\varepsilon, \nabla_{T} e(0, t)\right\rangle d t \\
& =\int_{t=0}^{t=1}\left[\left\langle\varepsilon, \nabla_{T} e(1, t)\right\rangle-\int_{s=0}^{s=1} \partial_{s}\left(\left\langle\varepsilon, \nabla_{T} e(s, t)\right\rangle\right) d s\right] d t \\
& =-\int_{t=0}^{t=1} \int_{s=0}^{s=1}\left\langle\varepsilon, \nabla_{S} \nabla_{T} e(s, t)\right\rangle d s d t \\
& =\int_{t=0}^{t=1} \int_{s=0}^{s=1}\left\langle\varepsilon, \Omega\left(C_{*} T, C_{*} S\right) e(s, t)\right\rangle d s d t \\
& =\int_{[0,1] \times[0,1]}\left\langle\varepsilon, C^{*} \Omega e\right\rangle .
\end{aligned}
$$

A corollary of this is the Ambrose-Singer theorem [1]. An elegant presentation of the above can be found in lecture notes of Werner Ballman[2].

References

[1] W. Ambrose and I. M. Singer. A theorem on holonomy. Trans. Amer. Math. Soc. 75 (1953), pp. 428-443. DOI: $10.2307 / 1990721$.
[2] W. Ballman. Vector Bundles and Connections. 2002. URL: http://people.mpimbonn.mpg.de/hwbllmnn/archiv/conncurv1999.pdf (visited on 03/2002).

