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Abstract

A direct approach is used to establish both Ball and Barthe’s
reverse isoperimetric inequalities for the unit balls of subspaces of
Lp. This approach has the advantage that it completely settles all
the open uniqueness questions for these inequalities.

Affine isoperimetric inequalities generally have ellipsoids as extremals.
The so called reverse affine isoperimetric inequalities usually have sim-
plices — or in the symmetric case cubes and their polars — as their
extremals.

Symmetrization techniques, developed and promoted by Steiner well
over a century ago, have been used to establish a variety of powerful
affine isoperimetric inequalities. The reverse inequalities would turn out
to be much harder to establish. They appeared to require some sort of
anti symmetrization technique.

By 1990, only one significant reverse inequality had been established
in dimensions greater than two: the Rogers-Shephard difference-body
inequality (see e.g., Schneider [42]). Unfortunately, the techniques em-
ployed by Rogers and Shephard could not be adapted to establish any
of the other conjectured reverse inequalities. A breakthrough occurred
in 1990 when Keith Ball connected John’s theorem characterizing the
largest ellipsoid contained in a convex body (the John ellipsoid) with
the Brascamp-Lieb inequality. The Brascamp-Lieb inequality had been
developed to solve the best-constant problem for Young’s convolution
inequality (see the excellent recent survey of Gardner [11]). Ball dis-
covered a gorgeous reformulation of the Brascamp-Lieb inequality that
seemed tailor-made to exploit the John ellipsoid. Ball’s normalized
Brascamp-Lieb inequality has had a profound impact on convex geo-
metric analysis (see, e.g., Ball [1, 2, 3], Bastero and Romance [5],
Giannopoulos and Papadimitrakis [13], Giannopoulos, Milman, and
Rudelson [12], Giannopoulos, Perissinaki, and Tsolomitis [14], Schecht-
man and Schmuckenschläger [40], Schmuckenschläger [41]).
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The problem of characterizing the extremals of the reverse inequali-
ties remained open. The reason for this is that not only were the equal-
ity conditions of the Brascamp-Lieb inequality not known, but they
were known to be complicated. The breakthrough here was achieved
by Barthe [4]. Barthe not only established the equality conditions
for the Brascamp-Lieb inequality but he discovered an amazing new
approach to establishing the Brascamp-Lieb inequality. Among other
things, this allowed Barthe to settle the uniqueness question for those re-
verse inequalities established using the Brascamp-Lieb inequality where
the generating measure is discrete.

Basic questions (discussed below) in the Lp Brunn-Minkowski the-
ory (see, e.g., [7], [8], [9], [15], [16], [17], [22], [23], [24], [25], [26],
[27], [28], [30], [29], [31], [32], [33], [34], [35], [39], [43], [44], [45],
[46], [48]) motivated the search for a direct approach to establishing
these reverse inequalities. A simple approach, which does not use the
Brascamp-Lieb inequality, is one of the aims of this paper. This ap-
proach allows us to answer all the surrounding uniqueness questions
that had remained open.

Throughout, a Borel measure on unit sphere Sn−1 of Euclidean n-
space Rn is to be understood to mean a nonnegative finite Borel measure
on Sn−1. A Borel measure µ on Sn−1 is said to be isotropic provided∫

Sn−1

v ⊗ v dµ(v) = I,

where I denotes the identity operator on Rn, and v ⊗ v is the rank
1 linear operator on Rn that takes x to (x · v)v, where x · v denotes
the standard inner product of x and v in Rn. A measure on Sn−1 is
said to be even if it assumes the same value on antipodal sets. Each
even isotropic Borel measure µ on Sn−1 determines an n-dimensional
subspace of Lp whose unit ball we denote by Z∗

p = Z∗
p(µ); to be specific,

the n-dimensional subspace of Lp = Lp(Sn−1) may be taken to be Rn

with a norm defined, for each x ∈ Rn, by

‖x‖Z∗p =
[∫

Sn−1

|x · v|pdµ(v)
]1/p

.

Conversely, a theorem of Lewis [20] shows that each n-dimensional sub-
space of Lp is isometric to a Banach space with such a representation
for some even isotropic Borel measure, µ. (See, e.g. [33] for details.)

Volume inequalities for the body Z∗
p = Z∗

p(µ) or its polar, Zp = Zp(µ),
that characterize the Euclidean subspaces of Lp, are easily obtained by
using well-known standard inequalities (such as the Urysohn and Hölder
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inequalities). Much more difficult to obtain are the reverse inequalities
for Z∗

p or Zp. These have the `n
p subspaces of Lp as extremals.

In 1991 Ball [2] used his normalized Brascamp-Lieb inequality to
obtain the sharp reverse inequality for the volume of Z∗

p , for all p ∈
[1,∞]. Ball’s inequality shows that the unit ball of `n

p is the extremal.
The solution to the uniqueness problem for Ball’s reverse inequality was
only recently obtained by Barthe [4] for discrete measures by using his
newly established equality conditions for the Brascamp-Lieb inequality.
Barthe proved that indeed the unit ball of `n

p is the only extremal for
Ball’s inequality when µ is a discrete isotropic measure.

The reverse inequalities for the volume of Zp would prove to be more
resistant. Ball [1] established the reverse inequality for the volume of
Zp for the case p = 1 and predicted that for p > 1 these inequalities
could be obtained from a reverse Brascamp-Lieb inequality. Again, the
breakthrough was achieved by Barthe [4]. Barthe found the reverse
Brascamp-Lieb inequality anticipated by Ball and used it to establish
the reverse inequalities for the volume of Zp for all p > 1. Barthe
also established the uniqueness of the extremals when µ is a discrete
measure.

Within the Lp Brunn-Minkowski theory a basic problem is how to ob-
tain Ball’s inequalities, along with their equality conditions, for isotropic
measures which are not necessarily discrete. In this paper we shall de-
rive the reverse inequalities for the volumes of both Zp and Z∗

p and prove
that the `n

p -balls are the unique extremals. All our inequalities will be
obtained along with their equality conditions. This will be done for all
p ∈ [1,∞] and all even isotropic measures, µ.

We have attempted to write an article that is simultaneously self-
contained and elementary. We have given very detailed proofs. Al-
though the questions we address arise naturally within the Lp Brunn-
Minkowski theory, none of the machinery of the theory is used. The
reader will find none of the staples of modern convex geometry; “Lp-
curvature”, “Gaussian extremals”, and the “Brascamp-Lieb inequality”
are conspicuous in their absence. The only inequality used to establish
the reverse inequalities will be the Hölder inequality.

The ideas and techniques of Ball and Barthe play a critical role
throughout this paper. It would be impossible to overstate our reliance
on their work.

Acknowledgement. The authors are grateful to Professors Keith
Ball and Franck Barthe for very helpful comments on early versions of
this work.
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0. Introduction

We assume that µ is a nonnegative finite even Borel measure on the
unit sphere Sn−1, whose support, supp µ, is not contained in a subsphere
of Sn−1. For each p ∈ [1,∞), define the origin-symmetric convex body
Zp = Zp(µ) in Rn to be the body whose support function (see Section
1 for definition), for u ∈ Sn−1, is given by

(0.1) hZp(u)p =
∫

Sn−1

|u · v|pdµ(v),

and, for p = ∞, is given by

(0.2) hZ∞(u) = lim
p→∞

hZp(u) = max
v∈supp µ

u · v.

The Z1 bodies are the zonoids (limits of Minkowski sums of line seg-
ments) of the classical Brunn-Minkowski theory. The Zp bodies are the
Lp-zonoids of the Lp Brunn-Minkowski theory.

In addition to its denoting absolute value, we shall use | · | to denote
the standard Euclidean norm on Rn, on occasion the absolute value of
the determinant of an n× n matrix, and often to denote n-dimensional
volume. A Borel measure µ on Sn−1 is isotropic provided

(0.3) |x|2 =
∫

Sn−1

|x · v|2dµ(v),

for all x ∈ Rn. Note that an isotropic measure cannot be concentrated
on a great subsphere of Sn−1. In light of (0.1) and (0.3), we see that

(0.4) µ is isotropic if and only if Z2(µ) = B,

where B denotes the standard unit ball in Rn. The two most important
examples of even isotropic measures on Sn−1 are (suitably normalized)
spherical Lebesgue measure and the cross measure. The basic cross mea-
sure is an even isotropic discrete measure concentrated on ±e1, . . . ,±en,
where e1, . . . , en denotes the canonical basis for Rn. A cross measure
is just a rotation of a basic cross measure; i.e., it is concentrated on
O{±e1, . . . ,±en}, where O ∈ O(n). Note that each point in the sup-
port of a cross measure is equally weighted.

For p ∈ [1,∞], let p∗ ∈ [1,∞] denote the Hölder conjugate of p; i.e.,
p∗ is defined by

1
p

+
1
p∗

= 1.

For n, p ∈ (0,∞), let

ωn(p) = 2n
Γ(1 + 1

p)n

Γ(1 + n
p )

.
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Let ωn(∞) = 2n, and abbreviate ωn(2) by ωn and note that for positive
integer n, the unit ball of Rn has precisely volume ωn. For p ∈ (0,∞),
define cp by

cp =

(
Γ(1 + n

2 )
Γ(1 + 1

2)
Γ(1+p

2 )
Γ(n+p

2 )

)n/p

,

and define c∞ = limp→∞ cp = 1.
The following two theorems are our main results.

Theorem 1. Suppose p ∈ [1,∞]. If µ is an even isotropic measure
on Sn−1, then

ωn/cp ≤ |Z∗
p(µ)| ≤ ωn(p).

If p ∈ [1,∞) is not an even integer, then there is equality in the left
inequality if and only if µ is suitably normalized Lebesgue measure. For
p 6= 2, there is equality in the right inequality if and only if µ is a cross
measure.

The right inequality of Theorem 1, without the equality conditions,
was proved by Ball [2], Proposition 8. For discrete measures the equality
conditions are due to Barthe [4], Corollary 3.

Theorem 2. Suppose p ∈ [1,∞]. If µ is an even isotropic measure
on Sn−1, then

ωn(p∗) ≤ |Zp(µ)| ≤ ωncp.

For p 6= 2, there is equality in the left inequality if and only if µ is a
cross measure. If p ∈ [1,∞) is not an even integer, then there is equality
in the right inequality if and only if µ is normalized Lebesgue measure.

The left inequality, without the equality conditions, for p = 1 is due
to Ball [1], Lemma 4. The left inequality of Theorem 2, for p > 1 is
due to Barthe [4], Proposition 11. For discrete measures the equality
conditions follow from the work of Barthe [4].

Theorems 1 and 2 have direct applications to volume-ratio inequal-
ities. Recall that the inner-volume ratio vri(K) and the outer-volume
ratio vro(K) of a convex body K in Rn are defined by

vri(K) = (|K|/|Ei|)1/n and vro(K) = (|K|/|Eo|)1/n,

where Ei is the ellipsoid of maximal volume contained in K, and Eo is
the ellipsoid of minimal volume containing K.

Let Bn
p = {x ∈ Rn : |e1 · x|p + · · ·+ |en · x|p ≤ 1} denote the unit ball

of classical n-dimensional `n
p -space. Theorems 1 and 2 immediately give

the following volume ratio inequalities.
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Theorem 3. Suppose 1 ≤ p ≤ ∞. If µ is an isotropic measure on
Sn−1, then

vri(Z∗
p) ≤ vri(Bn

p ) and vro(Zp) ≥ vro(Bn
p∗).

For p 6= 2, there is equality in each of the inequalities if and only if µ is
a cross measure.

The left inequality of Theorem 3 is due to Ball [2]. The right in-
equality is due to Barthe [4], for p > 1, and to Ball [1], for p = 1. The
equality conditions for p = ∞ and discrete µ are due to Barthe [4].

1. Notation and basics regarding convex bodies

For p ∈ [1,∞] we shall use | · |p to denote the usual `p-norm on Rn;
i.e., for x ∈ Rn and p < ∞

|x|p =
( n∑

j=1

|ej · x|p
)1/p

and |x|∞ = max
1≤j≤n

|ej · x|.

We will write `n
p = (Rn, | · |p). When p = 2 we write Rn rather than `n

2 ,
and suppress the subscript in the norm.

Important examples of origin-symmetric convex bodies are the Bn
p ,

the unit balls of `n
p . Note that we have |Bn

p | = ωn(p). When p = 2, we
shall write simply B rather than Bn

2 .
For easy subsequent referencing, we list some basic facts regarding

convex bodies. See Gardner [10], Schneider [42] and Thompson [47]
for additional details. A convex body is a compact convex set with
nonempty interior in Rn. In this work convex bodies always contain the
origin in their interiors. A convex body K is uniquely determined by
its support function hK : Sn−1 → (0,∞) which is defined for u ∈ Sn−1

by

(1.1) hK(u) = max{u · x : x ∈ K}.

The radial function ρK : Rn \ {0} → (0,∞) of the convex body K is
defined, for x 6= 0, by

(1.2) ρK(x) = max{λ ≥ 0 : λx ∈ K}.

Using the fact that the radial function is homogeneous of degree −1,
and rewriting the integrals over Rn as integrals over Sn−1 × (0,∞) in
polar coordinates, shows that for each p ∈ (0,∞), for the volume of K
we have

(1.3) |K| = 1
Γ(1 + n

p )

∫
Rn

exp{−1/ρK(x)p} dx,
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where the integral is with respect to Lebesgue measure on Rn.
Associated with each origin-symmetric convex body, K, is its polar

body K∗ which may be defined by

(1.4) K∗ = {x ∈ Rn : hK(x) ≤ 1}.
This definition leads to

(1.5) intK∗ = {x ∈ Rn : hK(x) < 1}.
The radial and support functions of K∗ and K are related by:

(1.6) ρK∗ = 1/hK and ρK = 1/hK∗ .

Note that if the convex body K is the unit ball of the Banach space Rn

with norm ‖ · ‖K , then

‖x‖K = 1/ρK(x),

for all x ∈ Rn.
The following duality is important: For p ∈ [1,∞]

(Bn
p )∗ = Bn

p∗ .

For p = 2 this expresses the fact that B∗ = B.

2. A basic inequality

A Borel measure (always assumed to be nonnegative and finite) µ on
Sn−1 generates a positive semi-definite n× n matrix [µ] defined by

[µ] =
∫

Sn−1

v ⊗ v dµ(v)

or equivalently by

(2.1) x · [µ]x =
∫

Sn−1

|x · v|2dµ(v),

for all x ∈ Rn. In (2.1) take x = ej , sum over all j, and for the trace of
[µ] we get:

tr[µ] =
n∑

j=1

ej · [µ]ej

=
n∑

j=1

∫
Sn−1

(ej · v)2dµ(v)

=
∫

Sn−1

1 dµ(v)

= µ(Sn−1).

(2.2)
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We shall require and review some basics regarding mixed discrimi-
nants. Recall that for positive semi-definite n× n matrices Q1, . . . , Qm

and real λ1, . . . , λm ≥ 0, the determinant of the linear combination
λ1Q1 + · · ·+ λmQm is a homogeneous polynomial of degree n in the λi,

det(λ1Q1 + · · ·+ λmQm) =
∑

1≤i1,...,in≤m

λi1 · · ·λinD(Qi1 , . . . , Qin),

where the coefficient D(Qi1 , . . . , Qin) depends only on Qi1 , . . . , Qin (and
not on any of the other Qj) and thus may be chosen to be symmetric in
its arguments. The coefficient D(Qi1 , . . . , Qin) is defined to be symmet-
ric in its arguments and is called the mixed discriminant of Qi1 , . . . , Qin .

The mixed discriminant D(Q, . . . , Q, I, . . . , I), with n − k copies of
Q and k copies of the identity matrix I will be abbreviated by Dk(Q).
Note that the elementary mixed discriminants D0(Q), . . . , Dn(Q) are
thus defined as the coefficients of the polynomial

det(Q + λI) =
n∑

i=0

(
n

i

)
λiDi(Q).

Obviously, D0(Q) = det(Q) while nDn−1(Q) = tr(Q) is the trace of Q.
For x1, . . . , xn ∈ Rn, let [x1, . . . , xn] denote the n-dimensional volume

of the parallelotope whose defining vectors are x1, . . . , xn. We require
the following easily-established (see, e.g., Busemann [6]) fact: Suppose
yij ∈ Rn, for 1 ≤ i ≤ m and 1 ≤ j ≤ n. If the positive semi-definite
matrices Q1, . . . , Qn are defined by

x ·Qjx =
m∑

i=1

|x · yij |2,

for all x ∈ Rn, then the mixed discriminant of Q1, . . . , Qn is given by

D(Q1, . . . , Qn) =
1
n!

∑
1≤i1,...,in≤m

[yi11, . . . , yinn]2.

Alternatively, if µ1, . . . , µn are discrete positive measures on Sn−1 and
suppµj ⊆ {v1j , . . . , vmj}, then

D([µ1], . . . , [µn]) =
1
n!

∑
1≤i1,...,in≤m

[vi11, . . . , vinn]2 µ1(vi11) · · ·µn(vinn).

It follows that for Borel measures µ1, . . . , µn on Sn−1, we have

(2.3) D([µ1], . . . , [µn]) =
1
n!

∫
Sn−1

· · ·
∫

Sn−1

[v1, . . . , vn]2dµ1(v1) · · · dµn(vn).
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We will use ν, possibly with subscripts, to denote isotropic measures
exclusively. We see from definitions (2.1) and (0.3) that the matrix
generated by an isotropic measure is the identity, I; i.e., [ν] = I. Thus
from (2.2) we see that for an isotropic measure ν,

(2.4) ν(Sn−1) = n,

and since D(I, . . . , I) = det I = 1, from (2.3) we see that

(2.5) 1 =
1
n!

∫
Sn−1

· · ·
∫

Sn−1

[v1, . . . , vn]2dν(v1) · · · dν(vn).

Choose µ2 = · · · = µn = ν. Since the measure ν is isotropic we have
[µ2] = · · · = [µn] = [ν] = I. For u ∈ Sn−1, choose µ1 to be the discrete
probability such that suppµ1 = {u}. We see from (2.2) that tr[µ1] = 1.
Thus for the left side of (2.3) we have

D([µ1], I, . . . , I) = Dn−1([µ1]) =
1
n

tr[µ1] =
1
n

.

This and the definition of µ1, shows that (2.3) gives

(2.6)
1

(n− 1)!

∫
Sn−1

· · ·
∫

Sn−1

[u, v2, . . . , vn]2dν(v2) · · · dν(vn) = 1,

for each u ∈ Sn−1.
Suppose t : Sn−1 → (0,∞) is continuous, and ν is an isotropic mea-

sure on Sn−1. Define the measure µ by dµ = t dν and let µ1 = · · · =
µn = µ. Thus, from definition (2.1) we have

[µ] =
∫

Sn−1

t(v) v ⊗ v dν(v).

Since D([µ], . . . , [µ]) = det[µ], identity (2.3) becomes

(2.7) det
∫

Sn−1

t(v) v ⊗ v dν(v)

=
1
n!

∫
Sn−1

· · ·
∫

Sn−1

t(v1) · · · t(vn) [v1, . . . , vn]2 dν(v1) · · · dν(vn).

For a Borel measure µ, let |f :µ|p denote the standard Lp norm of the
function f with respect to µ; i.e., for 0 < p < ∞

|f :µ|p =
{∫

|f |p dµ
}

)1/p,

and, for p = ∞,

|f :µ|∞ = lim
p→∞

|f :µ|p = sup
v
|f(v)|,



10 ERWIN LUTWAK, DEANE YANG & GAOYONG ZHANG

where the supremum is to be interpreted as an essential supremum. If
in addition, µ is a probability measure, then for p = 0 define

|f :µ|0 = lim
p→0

|f :µ|p = exp
∫

log |f | dµ.

For discrete measures, the following lemma is due to Ball. Barthe [4]
(Proposition 9) provides a very simple proof. The equality conditions
are new.

The Ball-Barthe Lemma. If t : Sn−1 → (0,∞) is continuous and
ν is an isotropic measure on Sn−1, then

(2.8) det
∫

Sn−1

t(v) v ⊗ v dν(v) ≥ exp
{∫

Sn−1

log t(v) dν(v)
}

,

with equality if and only if t(v1) · · · t(vn) is constant for linearly inde-
pendent v1, . . . , vn in supp(ν).

Proof. We first observe that by (2.6) the quantity in brackets in the
right hand side of∫

Sn−1

· · ·
∫

Sn−1

log t(v1) [v1, . . . , vn]2 dν(v1) · · · dν(vn)

=
∫

Sn−1

log t(v1)
[∫

Sn−1

· · ·
∫

Sn−1

[v1, . . . , vn]2 dν(v2) · · · dν(vn)
]
dν(v1)

is equal to (n− 1)!. We see from this that, for each i

1
(n− 1)!

∫
Sn−1

· · ·
∫

Sn−1

log t(vi) [v1, . . . , vn]2 dν(v1) · · · dν(vn)

=
∫

Sn−1

log t(v) dν(v).

Since by (2.5) the measure of the underlying space is unity, and thus
the L1-norm of the function (v1, . . . , vn) 7→ t(v1) · · · t(vn) dominates the
L0-norm, we have together with (2.6), that

1
n!

∫
Sn−1

· · ·
∫

Sn−1

t(v1) · · · t(vn) [v1, . . . , vn]2 dν(v1) · · · dν(vn)

≥ exp
[ 1
n!

∫
Sn−1

· · ·
∫

Sn−1

log(t(v1) · · · t(vn)) [v1, . . . , vn]2 dν(v1) · · · dν(vn)
]

= exp
[∫

Sn−1

log t(v) dν(v)
]
.

This together with (2.7) gives the desired inequality. Equality in the
inequality holds if and only if the function t(v1) · · · t(vn) is constant on
the support of the probability measure 1

n! [v1, . . . , vn]2dν(v1) · · · dν(vn).
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This is equivalent to t(v1) · · · t(vn) being constant for linearly indepen-
dent v1, . . . , vn ∈ supp(ν). See Lemma A.1 for details. q.e.d.

3. A minor inequality

Note that for even µ, from the definition (0.2) of Z∞ = Z∞(µ) we see
that hZ∞(u) ≤ 1 with hZ∞(u) = 1 if and only if u ∈ suppµ. Therefore
Z∞ is the smallest convex body containing suppµ; i.e.,

(3.1) Z∞ = conv(suppµ).

For t ∈ L1(µ) define t◦ ∈ Rn by

(3.2) t◦ =
∫

Sn−1

ut(u) dµ(u).

Obviously, for real λ > 0, we have

(3.3) (λt)◦ = λt◦.

Lemma 3.1. Suppose p ∈ [1,∞], and µ is an even Borel measure on
Sn−1. If t ∈ Lp∗(µ), then

(3.4) 1/ρZp(t
◦) ≤ | t :µ|p∗ .

Proof. For p < ∞, define

(3.1.1) Mp =
{
t◦ ∈ Rn : | t :µ|p∗ ≤ 1

}
,

while for p = ∞, define Mp as the closure of this; i.e.,

(3.1.2) M∞ = cl {t◦ ∈ Rn : | t :µ|1 ≤ 1} .

It is easily shown that Mp is a convex body for all p ∈ [1,∞].
In light of (3.3) and the fact that the radial function is homogeneous

of degree −1 we see that once the desired inequality (3.4) is established
for t = to, then it must hold for t = λto, for all λ > 0. Therefore it is
sufficient to establish (3.4) for the special case where |t : µ|p∗ = 1. We
shall do this by showing that for all p ∈ [1,∞],

(3.1.3) Mp ⊆ Zp.
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Suppose u ∈ Sn−1. First note that for p < ∞, from (1.1) and (3.1.1),
(3.2), the Hölder inequality, definition (0.1), we see that

hMp(u) = sup
|t:µ|p∗≤1

u · t◦

= sup
|t:µ|p∗≤1

∫
Sn−1

t(v)(u · v) dµ(v)

≤ sup
|t:µ|p∗≤1

| t :µ|p∗
[ ∫

Sn−1

|u · v|pdµ(v)
]1/p

=
[ ∫

Sn−1

|u · v|pdµ(v)
]1/p

= hZp(u).

For p = ∞, from (1.1) and (3.1.2), (3.2), and finally (0.2), we have

hM∞(u) = sup
|t:µ|1≤1

|u · t◦|

= sup
|t:µ|1≤1

∣∣∣∫
Sn−1

(u · v)t(v) dµ(v)
∣∣∣

≤ sup
v∈supp µ

|u · v|

= hZ∞(u),

which establishes (3.1.3). q.e.d.

4. Characterizations of supports of measures

We shall require the following:

Lemma 4.1. Suppose µ is an even Borel measure on Sn−1 which
is not concentrated on a great subsphere. Suppose there exists a non-
constant positive function g : R → (0,∞) such that if {v1, . . . , vn} ⊂
suppµ and {v′1, . . . , v′n} ⊂ suppµ are both linearly independent sets then

g(x · v1) · · · g(x · vn) = g(x · v′1) · · · g(x · v′n),

for all x ∈ Rn. Then there exists a linearly independent set of vectors
{u1, . . . , un} such that

suppµ = {±u1, . . . ,±un}.

Proof. Since µ is not concentrated on any great subsphere of Sn−1,
there exist linearly independent u1, . . . , un ∈ suppµ. Since µ is even,
{±u1, . . . ,±un} ⊆ suppµ.

We argue by contradiction and assume a vector v ∈ suppµ exists
such that v /∈ {±u1, . . . ,±un}. Write v = λ1u1 + · · · + λnun. At least
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one coefficient, say λ1, is not zero. Since {u1, u2, . . . , un} ⊂ suppµ and
{v, u2, . . . , un} ⊂ suppµ are both linearly independent sets,

g(x · u1) · · · g(x · un) = g(x · v)g(x · u2) · · · g(x · un),

for all x ∈ Rn. But g > 0, and hence

g(x · u1) = g(x · v),

for all x ∈ Rn.
Since g is not constant, there are s1 and s2 so that g(s1) 6= g(s2).

Since u1 and v are not parallel, there exists an xo ∈ Rn so that s1 = xo·u1

and s2 = xo · v. Thus, g(xo · u1) 6= g(xo · v) is the desired contradiction.
q.e.d.

The following slight variant of Lemma 4.1 will also be needed. The
almost identical proof is included for completeness.

Lemma 4.2. Suppose µ is an even Borel measure on Sn−1 which is
not concentrated on a great subsphere. Suppose there exists a real c > 0
and an even positive function g : (−c, c) → (0,∞) that is injective on
(0, c) such that if {v1, . . . , vn} ⊂ suppµ and {v′1, . . . , v′n} ⊂ suppµ are
both linearly independent sets then

g(x · v1) · · · g(x · vn) = g(x · v′1) · · · g(x · v′n),

whenever |x| < c. Then there exists a linearly independent set of vectors
{u1, . . . , un} such that

suppµ = {±u1, . . . ,±un}.

Proof. Since µ is not concentrated on any great subsphere of Sn−1,
there exist linearly independent u1, . . . , un ∈ suppµ. Since µ is even,
{±u1, . . . ,±un} ⊆ suppµ.

We argue by contradiction and assume a vector v ∈ suppµ exists
such that v /∈ {±u1, . . . ,±un}. Write v = λ1u1 + · · · + λnun. At least
one coefficient, say λ1, is not zero. Since {v, u2, . . . , un} ⊂ suppµ is a
linearly independent set,

g(x · u1) · · · g(x · un) = g(x · v)g(x · u2) · · · g(x · un),

whenever |x| < c. Since g > 0, we have

g(x · u1) = g(x · v),

whenever |x| < c. Since g is even and injective on (0, c) it follows that
x · u1 = ±x · v whenever |x| < c. Hence, the desired contradiction
v = ±u1. q.e.d.

We shall require the following trivial observation regarding isotropic
measures:
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Lemma 4.3. Suppose ν is an isotropic Borel measure on Sn−1. If

{u1, . . . , un} ⊂ Sn−1

is a basis for Rn and supp ν ⊆ {±u1, . . . ,±un}, then {u1, . . . , un} is in
fact an orthonormal basis.

Proof. Since ν is isotropic, from (0.3) we have for all x ∈ Rn,
n∑

i=1

ai|x · ui|2 = |x|2,

where ai = ν({ui,−ui}). Note that since ν is not concentrated on a
great subsphere, each ai > 0. Taking x = uj , gives

(4.3.1)
n∑

i=1

ai|uj · ui|2 = 1.

This shows that aj ≤ 1. But from (2.4) we know
∑n

i=1 ai = n and
hence, aj = 1 and from (4.3.1) we see that |uj · ui| = 0 for j 6= i. q.e.d.

5. Volume estimates of Lp zonoids

Note that from the definitions it follows immediately that if µ is a
basic cross measure, then Zp = (Bn

p )∗ = Bn
p∗ .

To establish Theorems 1 and 2 we first prove:

Theorem 5.1. Suppose p ∈ [1,∞) and q ∈ [1,∞]. If µ is an even
isotropic measure on Sn−1, then

(5.1) |Z∗
p(µ)|/ωn(p) ≤ |Zq(µ)|/ωn(q∗).

For (p, q) 6= (2, 2), equality holds if and only if there exist orthogonal
unit vectors u1, . . . , un such that

suppµ = {±u1, . . . ,±un};

that is, µ is a cross measure.

Proof. First, assume q ∈ (1,∞]. Define the strictly increasing func-
tion φ : R → R by

(5.1.1)
1

Γ(1 + 1
p)

∫ s

−∞
e−|τ |

p
dτ =

1
Γ(1 + 1

q∗ )

∫ φ(s)

−∞
e−|τ |

q∗
dτ.

Then φ′ > 0 and for all s ∈ R

(5.1.2) |s|p = |φ(s)|q∗ − log cp,q − log φ′(s),

where cp,q = Γ(1 + 1/p)/Γ(1 + 1/q∗).
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Define the transformation T : Rn → Rn by

(5.1.3) Tx =
∫

Sn−1

u φ(x · u) dµ(u).

Now (5.1.3) and Lemma 3.1 show that

(5.1.4) 1/ρZq(Tx)q∗ ≤
∫

Sn−1

|φ(x · u)|q∗ dµ(u),

for each x ∈ Rn. We see from (5.1.3) that the differential of T is given
by

(5.1.5) dT (x) =
∫

Sn−1

u⊗ u φ′(x · u) dµ(u),

for each x ∈ Rn. Thus, for all v ∈ Sn−1,

v · dT (x)v =
∫

Sn−1

|u · v|2 φ′(x · u) dµ(u),

and since φ′ > 0, and µ is not concentrated on a great subsphere of
Sn−1, we conclude that the matrix dT (x) is positive definite, for each
x ∈ Rn. Hence, a simple application of the mean value theorem shows
that T : Rn → Rn is (globally) injective.

¿From (1.3), (1.6) and definition (0.1), (5.1.2), (2.4), (5.1.5) and the
Ball-Barthe Lemma (2.8), (5.1.4), making the change of variables y =
Tx, and (1.3) again, we have:

Γ(1 + n
p ) |Z∗

p |

=
∫

Rn

exp{−1/ρZ∗p (x)p}dx

=
∫

Rn

exp
{
−
∫

Sn−1

|x · u|p dµ(u)
}

dx

=
∫

Rn

exp
{
−
∫

Sn−1

(|φ(x · u)|q∗− log φ′(x · u)− log cp,q) dµ(u)
}

dx

= cn
p,q

∫
Rn

exp
{
−
∫

Sn−1

|φ(x · u)|q∗dµ(u)
}

exp
{∫

Sn−1

log φ′(x · u) dµ(u)
}

dx

≤ cn
p,q

∫
Rn

exp
{
−
∫

Sn−1

|φ(x · u)|q∗dµ(u)
}
| dT (x)| dx

≤ cn
p,q

∫
Rn

exp
{
−1/ρZq(Tx)q∗

}
| dT (x)| dx

≤ cn
p,q

∫
Rn

exp{−1/ρZq(y)q∗} dy

= cn
p,q Γ(1 + n

q∗ ) |Zq|.
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This is the desired inequality (5.1).
The case q = 1 of inequality (5.1) follows from the cases q > 1,

established above, by taking the limit q → 1. However, in order to
establish the equality conditions, a direct proof is needed.

For q = 1, define φ : R → (−1, 1) by

1
Γ(1 + 1

p)

∫ s

−∞
e−|τ |

p
dτ =

∫ φ(s)

−∞
1[−1,1](τ)dτ.

Observe that φ is a strictly increasing function and thus φ′ > 0. Note
also that |φ| < 1. For all s ∈ R,

(5.1.6) |s|p = − log cp,1 − log φ′(s),

where cp,1 = Γ(1 + 1/p).
Define the transformation T : Rn → Rn by

(5.1.7) Tx =
∫

Sn−1

u φ(x · u) dµ(u),

for each x ∈ Rn. In fact, T : Rn → Z1; i.e.,

(5.1.8) T (Rn) ⊆ Z1.

To see this, note that since |φ| ≤ 1, Lemma 3.1 and (5.1.7) show that
ρZ1(Tx) ≥ 1, for all x ∈ Rn. But this and definition (1.2) immediately
give us the desired Tx ∈ Z1, for all x ∈ Rn.

We see from (5.1.7) that the differential of T is given by

(5.1.9) dT (x) =
∫

Sn−1

u⊗ u φ′(x · u) dµ(u).

Since φ′ > 0, the matrix dT (x) is positive definite for each x ∈ Rn, and
hence, a simple application of the mean value theorem shows that the
transformation T : Rn → Z1 ⊂ Rn is (globally) injective.

¿From (1.3), (0.1) and (1.6), (5.1.6), (2.4), (5.1.9) and the Ball-Barthe
Lemma (2.8), and the change of variables y = Tx together with (5.1.8),
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it follows that

Γ(1 + n
p )|Z∗

p | =
∫

Rn

exp{−1/ρZ∗p (x)p}dx

=
∫

Rn

exp
{
−
∫

Sn−1

|x · u|p dµ(u)
}

dx

=
∫

Rn

exp
{∫

Sn−1

(log φ′(x · u) + log cp,1) dµ(u)
}

dx

= cn
p,1

∫
Rn

exp
{∫

Sn−1

log φ′(x · u) dµ(u)
}

dx

≤ cn
p,1

∫
Rn

| dT (x)| dx

≤ cn
p,1

∫
Z1

dy

= cn
p,1 |Z1|.

Therefore, (5.1) holds when q = 1.
Assume equality holds in (5.1). The equality conditions, of the Ball-

Barthe Lemma (2.8) show that this implies that for each fixed x ∈ Rn,
the function φ′(x · u1) · · ·φ′(x · un) is constant for linearly independent
u1, . . . , un ∈ suppµ. If p 6= q∗, then the function φ′ is not constant.
Thus Lemmas 4.1 and 4.3 yield the necessity of the equality conditions
for p 6= q∗. Setting (p, q) = (p, 2) and (p, q) = (2, q) in (5.1) gives

|Z∗
p |/ωn(p) ≤ 1 ≤ |Zq|/ωn(q∗),

where the first equality holds if and only if p = 2 or µ is a cross measure,
and the second equality holds if and only if q = 2 or µ is a cross measure.
Therefore, the equality of (5.1) holds if and only if (p, q) = (2, 2) or µ
is a cross measure. q.e.d.

The proof above used techniques developed by Barthe in [4].
The next theorem follows from Theorem 5.1. The inequality in the

theorem is due to Ball [1] for p = 1. For p > 1 the inequality is due to
Barthe [4]. The equality conditions, for discrete measures, are due to
Barthe [4].

Theorem 5.2. Suppose p ∈ [1,∞]. If µ is an even isotropic measure
on Sn−1, then

(5.2) ωn(p∗) ≤ |Zp(µ)|,

and if p 6= 2, there is equality if and only if µ is a cross measure.
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The case p = ∞ of Theorem 5.1 is proved in the next theorem. The
inequality of the next theorem is due to Ball [2]. The equality conditions
for discrete measures are due to Barthe [4].

Theorem 5.3. Suppose p ∈ [1,∞]. If µ is an even isotropic measure
on Sn−1, then

(5.3) ωn(p) ≥ |Z∗
p(µ)|,

and for p 6= 2, there is equality if and only if µ is a cross measure.

Proof. The case where p < ∞ is a direct consequence of Theorem 5.1
with q = 2.

To establish the case p = ∞, define the strictly increasing function
φ : (−1, 1) → R by

(5.3.1)
∫ t

−1
1[−1,1](τ)dτ =

1
Γ(3

2)

∫ φ(t)

−∞
e−τ2

dτ.

Then φ′ > 0, and

(5.3.2) Γ(3
2)1[−1,1](s) = e−φ(s)2φ′(s),

for all s ∈ (−1, 1). Note that φ′ is an even function that is strictly
decreasing on the interval (−1, 0) and strictly increasing on the interval
(0, 1).

Now (0.2) and (1.5) give:

(5.3.3) int Z∗
∞ =

{
x ∈ Rn : sup

u∈supp µ
|x · u| < 1

}
.

We see from (5.3.3) that for each x ∈ intZ∗
∞

(5.3.4) exp
{∫

supp µ
log 1[−1,1](x · u) dµ(u)

}
= 1.

Define T : int Z∗
∞ → Rn by

(5.3.5) Tx =
∫

Sn−1

u φ(x · u) dµ(u).

Note that (5.3.3) shows that x·u is in the domain of φ, for all x ∈ intZ∗
∞

and all u ∈ suppµ. It follows from (5.3.5) and Lemma 3.1 that

(5.3.6) 1/ρZ2(Tx)2 ≤
∫

Sn−1

φ(x · u)2 dµ(u).

Now (5.3.5) gives

(5.3.7) dT (x) =
∫

Sn−1

u⊗ u φ′(x · u) dµ(u).
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Since φ′ > 0, the matrix dT (x) is positive definite for each x ∈ intZ∗
∞.

Hence, the transformation T : int Z∗
∞ → Rn is (globally) injective.

Lastly, note that from (2.4), we have

(5.3.8)
∫

supp µ
dµ(u) = n.

¿From (5.3.4), (5.3.2), (5.3.8), (5.3.7) and the Ball-Barthe Lemma
(2.8), (5.3.6), making the change of variable y = Tx, and finally (1.3),
we have

Γ(3
2)n|Z∗

∞|

= Γ(3
2)n

∫
int(Z∗∞)

exp
{∫

supp µ
log 1[−1,1](x · u) dµ(u)

}
dx

= Γ(3
2)n

∫
int(Z∗∞)

exp
{∫

supp µ
log[Γ(3

2)−1e−φ(x·u)2φ′(x · u)] dµ(u)
}

dx

=
∫

int(Z∗∞)
exp
{∫

supp µ
−φ(x · u)2dµ(u)

}
exp
{∫

supp µ
log φ′(x · u) dµ(u)

}
dx

≤
∫

int(Z∗∞)
exp
{∫

supp µ
−φ(x · u)2dµ(u)

}
| dT (x)| dx

≤
∫

int(Z∗∞)
exp{−1/ρZ2(Tx)2} | dT (x)| dx

≤
∫

Rn

e−1/ρZ2
(y)2dy

= Γ(1 + n
2 )|B|

= 2nΓ(3
2)n.

Assume equality holds in inequality (5.3) The equality conditions in
the Ball-Barthe Lemma (2.8), show that this implies that there exists a
δ > 0 such that whenever x satisfies |x| < δ, then for fixed x the function
φ′(x · u1) · · ·φ′(x · un) is constant for linearly independent u1, . . . , un ∈
suppµ. (Note that since Z∞ ⊆ B, it follows that B ⊆ Z∗

∞, and hence δ
may be taken to be 1.) Lemmas 4.2 and 4.3 will now yield the equality
conditions. q.e.d.

In order to prove Theorems 1 and 2 of the introduction we only need:

Lemma 5.4. Suppose p ∈ [1,∞]. If µ is an even isotropic measure
on Sn−1, then

ωn/cp ≤ |Z∗
p | and |Zp| ≤ ωncp.

If p ∈ [1,∞) is not an even integer, then there is equality in either
inequality if and only if µ is suitably normalized Lebesgue measure.
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To establish the lemma, first recall that for p not an even integer the
Lp-cosine transform (see e.g. Koldobsky [18], [19], Lonke [21], Neyman
[36], and Rubin [37], [38]) is injective; i.e., if p ∈ [1,∞) is not an even
integer and the measures µ and µ̄ are even Borel measures on Sn−1 such
that Zp(µ) = Zp(µ̄), then µ = µ̄.

To establish the first inequality, observe that for p < ∞, from (1.6),
definition (0.1), and the polar coordinate formula, together with the
Hölder inequality, definition (0.1), interchanging the order of integra-
tion, and (2.4), we have( |Z∗

p |
ωn

)−p/n

=
[

1
nωn

∫
Sn−1

hZp(u)−n du

]−p/n

≤ 1
nωn

∫
Sn−1

hZp(u)p du

=
1

nωn

∫
Sn−1

∫
Sn−1

|u · v|pdµ(v) du

=
c
p/n
p

n

∫
Sn−1

dµ(v)

= cp/n
p ,

with equality if and only if Zp is a ball. The injectivity of the Lp-cosine
transform now yields the equality conditions for the left inequality.

To establish the second inequality recall that the classical Urysohn
inequality (see, e.g., Schneider [42], p. 318) states that for an origin-
symmetric body K that is not a ball, the normalized volume (|K|/ωn)1/n

is strictly less than the average value of its support function, hK . Now
for real p, the Urysohn inequality, followed by the Hölder inequality,
definition (0.1), a change of the order of integration, and finally (2.4),
gives (

|Zp|
ωn

)1/n

≤ 1
nωn

∫
Sn−1

hZp(u) du

≤
[ 1
nωn

∫
Sn−1

hZp(u)p du
]1/p

=
[ 1
nωn

∫
Sn−1

∫
Sn−1

|u · v|pdµ(v) du
]1/p

=
[cp/n

p

n

∫
Sn−1

dµ(v)
]1/p

= c1/n
p ,
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with equality if and only if Zp is a ball. The injectivity of the Lp-cosine
transform now yields the equality conditions for the right inequality.
q.e.d.

It is easily seen that

B ⊆ Zp ⊆ n
1
p
− 1

2 B, p ∈ [1, 2],

n
1
p
− 1

2 B ⊆ Zp ⊆ B, p ∈ [2,∞].

To see this note that for p ∈ [1, 2) the isotropy of µ gives us

hZp(u) =
[∫

Sn−1

|u · v|pdµ(v)
] 1

p

≥
[∫

Sn−1

|u · v|2dµ(v)
] 1

p

= 1,

while from the Hölder inequality and the isotropy of µ we get

hZp(u) = n
1
p

[ 1
n

∫
Sn−1

|u · v|pdµ(v)
] 1

p

≤ n
1
p

[ 1
n

∫
Sn−1

|u · v|2dµ(v)
] 1

2

= n
1
p
− 1

2 .

For p ∈ (2,∞] the inequalities are reversed.
The above inclusions provide an ellipsoid (in fact a ball) which con-

tains the body Zp (and hence is contained in the body Z∗
p). These

inclusions, together with the definitions of vri and vro, and Theorems 1
and 2 give the following volume ratio inequalities:

Theorem 3. Suppose 1 ≤ p ≤ ∞. If µ is an isotropic measure on
Sn−1, then

vri(Z∗
p) ≤ vri(Bn

p ),

vro(Zp) ≥ vro(Bn
p∗).

For p 6= 2, there is equality in each of the inequalities if and only if µ is
a cross measure.

The first inequality of Theorem 3 is due to Ball [2]. The second
inequality is due to Barthe [4], for p > 1, and to Ball [1], for p = 1. The
equality conditions for p = ∞ and discrete µ are due to Barthe [4].
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Appendix A.

If x1, . . . , xn ∈ Rn, then [x1, . . . , xn] is the n-dimensional volume of
the parallelotope whose defining vectors are x1, . . . , xn. If µ1, . . . , µn

are Borel measures on Sn−1, then let [µ1 × · · · × µn] denote the Borel
measure on the n copies Sn−1 × · · · × Sn−1 defined by∫

Sn−1×···×Sn−1

f(u) d[µ1 × · · · × µn](u)

=
∫

Sn−1

· · ·
∫

Sn−1

f(u1, . . . , un)[u1, . . . , un] dµ1(u1) . . . dµn(un),

for each continuous f : Sn−1 × · · · × Sn−1 −→ R.
Define the set Φ by:

Φ = {(u1, . . . , un) ∈ Sn−1 × · · · × Sn−1 : [u1, . . . , un] 6= 0}.
Our goal is to establish:

Lemma A.1. Suppose µ1, . . . , µn are finite nonnegative Borel mea-
sures on Sn−1, and g : Sn−1 × · · · × Sn−1 −→ R is continuous. Then g
is constant a.e. with respect to [µ1×· · ·×µn] if and only if g is constant
on

Φ ∩ (supp µ1 × · · · × suppµn).

To prove Lemma A.1 we require the following well-known result:

Lemma A.2. If µ1, . . . , µn are finite nonnegative Borel measures on
Sn−1, then

suppµ1 × · · · × suppµn = supp(µ1 × · · · × µn).

Proof. Let Ni ⊂ Sn−1 be the largest open sets so that µi(Ni) = 0; i.e.,
N c

i = suppµi. Let O be the largest open set for which µ1×· · ·×µn(O) =
0; i.e.,

Oc = supp(µ1 × · · · × µn).
First, observe that

suppµ1 × · · · × suppµn

= N c
1 × · · · ×N c

n

= ((N1 × Sn−1 × · · · × Sn−1) ∪ · · · ∪ (Sn−1 × · · · × Sn−1 ×Nn))c

⊇ supp(µ1 × · · · × µn).

To see that the above inclusion cannot be strict, assume that there exists
a (u1, . . . , un) ∈ O, such that

(u1, . . . , un) /∈ (N1×Sn−1×· · ·×Sn−1)∪· · ·∪ (Sn−1×· · ·×Sn−1×Nn).
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Thus ui /∈ Ni, for all i. Since (u1, . . . , un) ∈ O and O is open, there exist
open sets Vi such that (u1, . . . , un) ∈ V1 × · · · × Vn ⊆ O. But ui ∈ Vi

and ui /∈ Ni implies that the open sets Vi are not contained in Ni, and
hence µi(Vi) > 0. Therefore,

0 = µ1 × · · · × µn(O)

≥ µ1 × · · · × µn(V1 × · · · × Vn)

= µ1(V1) · · ·µn(Vn) > 0,

a contradiction. q.e.d.

Proof of Lemma A.1. Let Dc = supp[µ1 × · · · × µn]. Hence Dc is an
open set such that∫

D
[u1, . . . , un] dµ1(u1) · · · dµn(un) = 0

and since [u1, . . . , un] ≥ 0 on D, we have∫
Φ∩D

[u1, . . . , un] dµ1(u1) · · · dµn(un) = 0.

Since [u1, . . . , un] > 0 on Φ ∩ D, we conclude that∫
Φ∩D

dµ1 · · · dµn = 0.

This and the fact that Φ ∩ D is open shows that Φ ∩ D is contained in
the complement of the support of µ1 × · · · × µn. Thus,

supp(µ1 × · · · × µn) ⊆ (Φ ∩ D)c,

and hence

Φ ∩ supp(µ1 × · · · × µn) ⊆ Φ ∩ (Φ ∩ D)c ⊆ Dc = supp[µ1 × · · · × µn].

Thus from Lemma A.1, we have

(A.1.1) Φ ∩ (supp µ1 × · · · × suppµn) ⊆ supp[µ1 × · · · × µn].

If g is constant a.e. with respect to [µ1 × · · · × µn], then since g is
continuous, g is constant on the set supp[µ1×· · ·×µn], and from (A.1.1)
we now see that g is constant on the set Φ ∩ (supp µ1 × · · · × suppµn).

Suppose now that g is constant on Φ∩(supp µ1×· · ·×suppµn). This
assumption implies that g is constant on all but a set of [µ1× · · · ×µn]-
measure 0. To see this, simply observe that

(Φ ∩ (supp µ1 × · · · × suppµn))c

= Φc ∪ (N c
1 × · · · ×N c

n)c

= Φc ∪ (N1 × Sn−1 × · · · × Sn−1) ∪ · · · ∪ (Sn−1 × · · · × Sn−1 ×Nn),



24 ERWIN LUTWAK, DEANE YANG & GAOYONG ZHANG

where N c
i = suppµi, and clearly this is a union of sets of [µ1×· · ·×µn]-

measure 0. q.e.d.
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[43] C. Schütt and E. Werner, Polytopes with vertices chosen randomly from the
boundary of a convex body, Geometric aspects of functional analysis (Israel,
2001–2002), Lecture Notes in Mathematics, vol. 1807, Springer-Verlag, Berlin,
2003, pp. 241–422.
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