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Moment-entropy inequalities for a random vector
Erwin Lutwak, Deane Yang, and Gaoyong Zhang

Abstract— The p-th moment matrix is defined for a real
random vector, generalizing the classical covariance matrix.
Sharp inequalities relating the p-th moment and Renyi entropy
are established, generalizing the classical inequality relating
the second moment and the Shannon entropy. The extremal
distributions for these inequalities are completely characterized.

I. INTRODUCTION

In [9] the authors demonstrated how the classical informa-
tion theoretic inequality for the Shannon entropy and second
moment of a real random variable could be extended to
inequalities for Renyi entropy and the p-th moment. The
extremals of these inequalities were also completely charac-
terized. Moment-entropy inequalities, using Renyi entropy, for
discrete random variables have also been obtained by Arikan
[2].

We describe how to extend the definition of the second mo-
ment matrix of a real random vector to that of the p-th moment
matrix. Using this, we extend the moment-entropy inequalities
and the characterization of the extremal distributions proved
in [9] to higher dimensions.

Variants and generalizations of the theorems presented can
be found in work of the authors [8], [10], [11] and Bastero-
Romance [3].

The authors would like to thank Christoph Haberl for his
careful reading of this paper and valuable suggestions for
improving it.

II. THE p-TH MOMENT MATRIX OF A RANDOM VECTOR

A. Basic notation

Throughout this paper we denote:

Rn = n-dimensional Euclidean space
x · y = standard Euclidean inner product of x, y ∈ Rn

|x| =
√

x · x
S = positive definite symmetric n-by-n matrices
|A| = determinant of A ∈ S

|K| = Lebesgue measure of K ⊂ Rn.

The standard Euclidean ball in Rn will be denoted by B, and
its volume by ωn.

Each inner product on Rn can be written uniquely as

(x, y) ∈ Rn × Rn 7→ 〈x, y〉A = Ax ·Ay,

for A ∈ S. The associated norm will be denoted by | · |A.
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Throughout this paper, X denotes a random vector in Rn.
The probability measure on Rn associated with a random
vector X is denoted mX .

We will denote the standard Lebesgue density on Rn by
dx. By the density function fX of a random vector X , we
mean the Radon-Nikodym derivative of probability measure
mX with respect to Lebesgue measure.

If V is a vector space and Φ : Rn → V is a continuous
function, then the expected value of Φ(X) is given by

E[Φ(X)] =
∫

Rn

Φ(x) dmX(x).

We call a random vector X nondegenerate, if E[|v ·X|] > 0
for each nonzero v ∈ Rn.

B. The p-th moment of a random vector

For p ∈ (0,∞), the standard p-th moment of a random
vector X is given by

E[|X|p] =
∫

Rn

|x|p dmX(x). (1)

More generally, the p-th moment with respect to the inner
product 〈·, ·〉A is

E[|X|pA] =
∫

Rn

|x|pA dmX(x).

C. The p-th moment matrix

The second moment matrix of a random vector X is defined
to be

M2[X] = E[X ⊗X],

where for v ∈ Rn, v ⊗ v is the linear transformation given
by x 7→ (x · v)v. Recall that M2[X −E[X]] is the covariance
matrix. An important observation is that the definition of the
moment matrix does not use the inner product on Rn.

A unique characterization of the second moment matrix is
the following: Let M = M2[X]. The inner product 〈·, ·〉M−1/2

is the unique one whose unit ball has maximal volume among
all inner products 〈·, ·〉A that are normalized so that the second
moment satisfies E[|AX|2] = n.

We extend this characterization to a definition of the p-th
moment matrix Mp[X] for all p ∈ (0,∞).

Theorem 1: If p ∈ (0,∞) and X is a nondegenerate
random vector in Rn with finite p-th moment, then there exists
a unique matrix A ∈ S such that

E[|X|pA] = n

and
|A| ≥ |A′|,
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for each A′ ∈ S such that E[|X|pA′ ] = n. Moreover, the matrix
A is the unique matrix in S satisfying

I = E[AX ⊗AX|AX|p−2].
We define the p-th moment matrix of a random vector X to

be Mp[X] = A−p, where A is given by the theorem above.
The proof of the theorem is given in §IV

III. MOMENT-ENTROPY INEQUALITIES

A. Entropy

The Shannon entropy of a random vector X is defined to
be

h[X] = −
∫

Rn

fX log fX dx,

provided that the integral above exists. For λ > 0 the λ-Renyi
entropy power of a density function is defined to be

Nλ[X] =


(∫

Rn

fλ
X

) 1
1−λ

if λ 6= 1,

eh[f ] if λ = 1,

provided that the integral above exists. Observe that

lim
λ→1

Nλ[X] = N1[X].

The λ–Renyi entropy of a random vector X is defined to be

hλ[X] = log Nλ[X].

The entropy hλ[X] is continuous in λ and, by the Hölder
inequality, decreasing in λ. It is strictly decreasing, unless X
is a uniform random vector.

It follows by the chain rule that

Nλ[AX] = |A|Nλ[X], (2)

for each A ∈ S.

B. Relative entropy

Given two random vectors X, Y in Rn, their relative Shan-
non entropy or Kullback–Leibler distance [6], [5], [1] (also,
see page 231 in [4]) is defined by

h1[X, Y ] =
∫

Rn

fX log
(

fX

fY

)
dx, (3)

provided that the integral above exists. Given λ > 0, we define
the relative λ–Renyi entropy power of X and Y as follows. If
λ 6= 1, then

Nλ[X, Y ] =

(∫
Rn

fλ−1
Y fX dx

) 1
1−λ

(∫
Rn

fλ
Y dx

) 1
λ

(∫
Rn

fλ
X dx

) 1
λ(1−λ)

, (4)

and, if λ = 1, then

N1[X, Y ] = eh1[X,Y ],

provided in both cases that the righthand side exists. Define
the λ–Renyi relative entropy of random vectors X and Y by

hλ[X, Y ] = log Nλ[X, Y ].

Observe that hλ[X, Y ] is continuous in λ.
Lemma 2: If X and Y are random vectors such that hλ[X],

hλ[Y ], and hλ[X, Y ] are finite, then

hλ[X, Y ] ≥ 0.

Equality holds if and only if X = Y .
Proof: If λ > 1, then by the Hölder inequality,∫
Rn

fλ−1
Y fX dx ≤

(∫
Rn

fλ
Y dx

)λ−1
λ

(∫
Rn

fλ
X dx

) 1
λ

,

and if λ < 1, then we have∫
Rn

fλ
X =

∫
Rn

(fλ−1
Y fX)λf

λ(1−λ)
Y

≤
(∫

Rn

fλ−1
Y fX

)λ (∫
Rn

fλ
Y

)1−λ

.

The inequality for λ = 1 follows by taking the limit λ → 1.
The equality conditions for λ 6= 1 follow from the equality

conditions of the Hölder inequality. The inequality for λ =
1, including the equality condition, follows from the Jensen
inequality (details may be found, for example, page 234 in
[4]).

C. Generalized Gaussians

We call the extremal random vectors for the moment-
entropy inequalities generalized Gaussians and recall their
definition here.

Given t ∈ R, let

t+ = max(t, 0).

Let
Γ(t) =

∫ ∞

0

xt−1e−x dx

denote the Gamma function, and let

β(a, b) =
Γ(a)Γ(b)
Γ(a + b)

denote the Beta function.
For each p ∈ (0,∞) and λ ∈ (n/(n + p),∞), define the

standard generalized Gaussian to be the random vector Z in
Rn whose density function fZ : Rn → [0,∞) is given by

fZ(x) =


ap,λ(1 + (1− λ)|x|p)1/(λ−1)

+ if λ 6= 1

ap,1e
−|x|p if λ = 1,

(5)

where

ap,λ =



p(1− λ)
n
p

nωnβ(n
p , 1

1−λ −
n
p )

if λ < 1,

p

nωnΓ(n
p )

if λ = 1,

p(λ− 1)
n
p

nωnβ(n
p , λ

λ−1 )
if λ > 1.

Any random vector Y in Rn that can be written as Y = AZ,
for some A ∈ S is called a generalized Gaussian.
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D. Information measures of generalized Gaussians

If 0 < p < ∞ and λ > n/(n + p), the λ-Renyi entropy
power of the standard generalized Gaussian random vector Z
is given by

Nλ[Z] =


(

1 +
n(λ− 1)

pλ

) 1
λ−1

a−1
p,λ if λ 6= 1

e
n
p a−1

p,1 if λ = 1

If 0 < p < ∞ and λ > n/(n + p), then the p-th moment
of Z is given by

E[|Z|p] =
[
λ

(
1 +

p

n

)
− 1

]−1

.

We define the constant

c(n, p, λ) =
E[|Z|p]1/p

Nλ[Z]1/n

= a
1/n
p,λ

[
λ

(
1 +

p

n

)
− 1

]− 1
p

b(n, p, λ),

(6)

where

b(n, p, λ) =


(
1− n(1−λ)

pλ

) 1
n(1−λ)

if λ 6= 1

e−1/p if λ = 1.

Observe that if λ 6= 1 and 0 < p < ∞, then∫
Rn

fλ
Z = aλ−1

p,λ (1 + (1− λ)E[|Z|p]), (7)

and if λ = 1, then

h[Z] = − log ap,1 + E[|Z|p]. (8)

We will also need the following scaling identities:

ftZ(x) = t−nfZ(t−1x), (9)

for each x ∈ Rn. Therefore,∫
Rn

fλ
tZ dx = tn(1−λ)

∫
Rn

fλ
Z dx, (10)

and
E[|tZ|p] = tpE[|Z|p].

E. Spherical moment-entropy inequalities

The proof of Theorem 2 in [9] extends easily to prove the
following. A more general version can be found in [7].

Theorem 3: If p ∈ (0,∞), λ > n/(n + p), and X is a
random vector in Rn such that Nλ[X], E[|X|p] < ∞, then

E[|X|p]1/p

Nλ[X]1/n
≥ c(n, p, λ),

where c(n, p, λ) is given by (6). Equality holds if and only if
X = tZ, for some t ∈ (0,∞).

Proof: For convenience let a = ap,λ. Let

t =
(

E[|X|p]
E[|Z|p]

)1/p

(11)

and Y = tZ.

If λ 6= 1, then by (9) and (5), (1), (11), and (7),∫
Rn

fλ−1
Y fX

≥ aλ−1tn(1−λ) + (1− λ)aλ−1tn(1−λ)−p

∫
Rn

|x|pfX(x) dx

= aλ−1tn(1−λ)(1 + (1− λ)t−pE[|X|p])
= aλ−1tn(1−λ)(1 + (1− λ)E[|Z|]p])

= tn(1−λ)

∫
Rn

fλ
Z , (12)

where equality holds if λ < 1. It follows that if λ 6= 1, then
by Lemma 2, (4), (10) and (12), and (11), we have

1 ≤ Nλ[X, Y ]λ

=
(∫

Rn

fλ
Y

) (∫
Rn

fλ
X

)− 1
1−λ

(∫
Rn

fλ−1
Y fX

) λ
1−λ

≤ tn
Nλ[Z]
Nλ[X]

=
E[|X|p]n/p

Nλ[X]
Nλ[Z]

E[|Z|p]n/p
.

If λ = 1, then by Lemma 2, (3) and (5), and (8) and (11),

0 ≤ h1[X, Y ]
= −h[X]− log a + n log t + t−pE[|X|p]

= −h[X] + h[Z] +
n

p
log

E[|X|p]
E[|Z|p]

.

Lemma 2 shows that equality holds in all cases if and only
if Y = X .

F. Elliptic moment-entropy inequalities

Corollary 4: If A ∈ S, p ∈ (0,∞), λ > n/(n + p), and
X is a random vector in Rn satisfying Nλ[X], E[|X|p] < ∞,
then

E[|X|pA]1/p

|A|1/nNλ[X]1/n
≥ c(n, p, λ), (13)

where c(n, p, λ) is given by (6). Equality holds if and only if
X = tA−1Z for some t ∈ (0,∞).

Proof: By (2) and Theorem 3,

E[|X|pA]1/p

|A|1/nNλ[X]1/n
=

E[|AX|p]1/p

Nλ[AX]1/n

≥ E[|Z|p]1/p

Nλ[Z]1/n
,

and equality holds if and only if AX = tZ for some t ∈
(0,∞).

G. Affine moment-entropy inequalities

Optimizing Corollary 4 over all A ∈ S yields the following
affine inequality.

Theorem 5: If p ∈ (0,∞), λ > n/(n + p), and X is a
random vector in Rn satisfying Nλ[X], E[|X|p] < ∞, then

|Mp[X]|1/p

Nλ[X]
≥ n−n/pc(n, p, λ)n,
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where c(n, p, λ) is given by (6). Equality holds if and only if
X = A−1Z for some A ∈ S.

Proof: Substitute A = Mp[X]−1/p into (13)
Conversely, Corollary 4 follows from Theorem 5 by Theo-

rem 1.

IV. PROOF OF THEOREM 1

A. Isotropic position of a probability measure

A Borel measure µ on Rn is said to be in isotropic position,
if ∫

Rn

x⊗ x

|x|2
dµ(x) =

1
n

I, (14)

where I is the identity matrix.
Lemma 6: If p ≥ 0 and µ is a Borel probability measure

in isotropic position, then for each A ∈ S,

|A|−1/n

(∫
Rn

|Ax|p

|x|p
dµ(x)

)1/p

≥ 1,

with either equality holding if and only if A = aI for some
a > 0.

Proof: By Hölder’s inequality,(∫
Rn

|Ax|p

|x|p
dµ(x)

)1/p

≥ exp
(∫

Rn

log
|Ax|
|x|

dµ(x)
)

,

so it suffices to prove the p = 0 case only.
By (14), ∫

Rn

(x · e)2

|x|2
dµ(x) =

1
n

, (15)

for any unit vector e.
Let e1, . . . , en be an orthonormal basis of eigenvectors of A

with corresponding eigenvalues λ1, . . . , λn. By the concavity
of log, and (15),∫

Rn

log
|Ax|
|x|

dµ(x) =
1
2

∫
Rn

log
|Ax|2

|x|2
dµ(x)

=
1
2

∫
Rn

log
n∑

i=1

λ2
i

(x · ei)2

|x|2
dµ(x)

≥ 1
2

∫
Rn

n∑
i=1

(x · ei)2

|x|2
log λ2

i dµ(x)

= log |A|1/n.

The equality condition follows from the strict concavity of log.

B. Proof of theorem

Lemma 7: If p > 0 and X is a nondegenerate random
vector in Rn with finite p-th moment, then there exists c > 0
such that

E[|e ·X|p] ≥ c, (16)

for every unit vector e.
Proof: The left side of (16) is a positive continuous

function of the unit sphere, which is compact.

Theorem 8: If p ≥ 0 and X is a nondegenerate random
vector in Rn with finite p-th moment, then there exists A ∈ S,
unique up to a scalar multiple, such that

|A|−1/nE[|AX|p]1/p ≤ |A′|−1/nE[|A′X|p]1/p (17)

for every A′ ∈ S.
Proof: Let S′ ⊂ S be the subset of matrices whose

maximum eigenvalue is exactly 1. This is a bounded set inside
the set of all symmetric matrices, with its boundary ∂S′ equal
to positive semidefinite matrices with maximum eigenvalue
1 and minimum eigenvalue 0. Given A′ ∈ S′, let e be an
eigenvector of A′ with eigenvalue 1. By Lemma 7,

|A′|−1/nE[|A′X|p]1/p ≥ |A′|−1/nE[|X · e|p]1/p

≥ c1/p|A′|−1/n.
(18)

Therefore, if A′ approaches the boundary ∂S′, the left side
of (18) grows without bound. Since the left side of (18) is
a continuous function on S′, the existence of a minimum
follows.

Let A ∈ S be such a minimum and Y = AX . Then for
each B ∈ S,

|B|−1/nE[|BY |p]1/p = |A|1/n|BA|−1/nE[|(BA)X|p]1/p

≥ |A|1/n|A|−1/nE[|AX|p]1/p

= E[|Y |p]1/p.
(19)

with equality holding if and only if equality holds for (17)
with A′ = BA. Setting B = I + tB′ for B′ ∈ S, we get

|I + tB′|−1/nE[|(I + tB′)Y |p]1/p ≥ E[|Y |p]1/p,

for each t near 0. It follows that

d

dt

∣∣∣∣
t=0

|I + tB′|−1/nE[|(I + tB′)Y |p]1/p = 0,

for each B′ ∈ S. A straightforward computation shows that
this holds only if

1
n

E[|Y |p]I = E[Y ⊗ Y |Y |p−2]. (20)

Applying Lemma 6 to

dµ(x) =
|x|p dmY (x)

nE[|Y |p]
,

implies that equality holds for (19) only if B = aI for some
a ∈ (0,∞). This, in turn, implies that equality holds for (17)
only if A′ = aA.

Theorem 1 follows from Theorem 8 by rescaling A so that
E[|Y |p] = n and substituting Y = AX into (20).
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