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This essay is based on the obituary written by I. M. Yaglom [18] and Chern’s essay [7] on
Blaschke’s contributions to mathematics.

1. Blaschke’s life

Blaschke was born in Graz, Austria in 1885. His early mathematical training was by his
father, who taught secondary school geometry. Later, he studied from many distinguished
geometers, including Wirtinger, Study, Bianchi, Engel, Hilbert, and Klein. In 1919 he was
appointed Professor at the newly founded university in Hamburg and remained there for the
rest of his life. Among his colleagues there were von Neumann, Siegel, Artin, Ostrowski,
Rademacher, Radon, Hecke, Hasse, Kollatz, Nielsen, Schreier, and Sperner. His best known
students were Luis Santalo and S. S. Chern.

2. The mathematical work of Blaschke

Blaschke’s best known work is in convex geometry, affine differential geometry, and integral
geometry.

2.1. Convex geometry. In convex geometry, Blaschke established a compactness theorem
for sequences of convex bodies, now known as the Blaschke selection theorem, and used to
prove new sharp convex geometric inequalities. It states that any sequence of convex sets
contained in a bounded set has a subsequence that converges with respect to the Hausdorff
metric. This result continues to be a useful tool for establishing sharp isoperimetric-type
inequalities satisfied by convex bodies.

Blaschke also formulated what is now known as the Blaschke-Santalo inequality, which
is a fundamental affine geometric inequality for convex bodies. It has deep connections to
probability and functional analysis, as well as number theory, partial differential equations,
and differential geometry. Generalizations of the Blaschke-Santalo inequality are still actively
studied today. The inequality states that given a convex body K ⊂ Rn with its center of
mass at the origin and its polar body K∗, their volumes satisfy the inequality V (K)V (K∗) ≤
V (B)2, where B is the standard Euclidean ball, and equality holds if and only if K is
an ellipsoid. Blaschke established this when n ≤ 3, and Santalo [15] extended it to all
dimensions.

One of the most important outstanding unsolved problems in convex geometry is the
Mahler conjecture, which states that there is a sharp reverse inequality, where equality
holds if and only if the body is a simplex. This conjecture has been established only under
additional assumptions and is still actively studied.
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2.2. Integral geometry. Work in integral geometry dates back at least to the work of
Crofton, who showed that the invariant measure of the set of lines intersecting an arc in
the plane is proportional to the arclength. Blaschke, however, was the first to view it as
a subject just as important as differential geometry. He initiated an effort to develop the
foundations of the subject, which was continued by his students Chern and Santalo.

In particular, Blaschke initiated a systematic study of kinematic formulas. A kinematic
formula can be described as follows: Let G1 and G2 be geometric objects (a linear subspace,
a submanifold, or a subdomain) in Rn. Each has natural geometric invariants associated
with it, including Euler characteristic, volume, and volume of the

boundary. On the other hand, an integral geometric invariant of G2 can be defined by
averaging over all rigid motions a geometric invariant of the intersection of G2 with a rigid
motion of G1. A kinematic formula expresses the latter as a linear combination of the former.

Blaschke’s work focused on Euclidean space, but kinematic formulas can be generalized
to other geometric structures defined by a transformation group. Much work was done by
Chern, Santalo, and others to develop these generalizations. See, for example, the book of
Santalo [16]. Chern, in papers such as [5] and [6], showed how kinematic formulas could be
derived on homogeneous spaces.

2.3. Affine differential geometry. Blaschke also initiated the study of affine differential
geometry following Klein’s Erlangen Program. In the second volume [2] of his series of
monographs on differential geometry, he systematically derives local differential geometric
invariants for a submanifold of Rn that are invariant or behave nicely under affine transfor-
mations. He is best known for introducing the notion of an affine normal of a hypersurface in
Rn for n ≥ 3. The affine normal is an affine analogue to the Gauss map in Euclidean differ-
ential geometry. This can be used to define the notion of an affine sphere, which can also be
described as a solution to a Monge-Ampère-type PDE. See Loftin [13] and Loftin-Wang-Yang
[14] for a survey on affine spheres.

2.4. Riemannian geometry. Blaschke’s main contributions to Riemannian geometry con-
sist of his expository writings and questions he posed for future mathematicians to study.
The best known example of this is the Blaschke conjecture.

Blaschke [3] introduced the notion of a wiedersehen surface. A closed 2-dimensional Rie-
mannian manifold M is wiedersehen, if there exists d > 0 such that for each p ∈ M there
is another point q ∈ M such that every geodesic starting at p passes through q at distance
d. Blaschke [3] conjectured in 1921 that any wiedersehen surface must be the 2-sphere
with a constant curvature Riemannian metric. Chern [7] describes the early history of this
conjecture. It was proved by Green [12].

The definition of a wiedersehen surface extends without change to that of a wiedersehen
manifold in higher dimensions. The question of whether the Blaschke conjecture holds in
higher dimensions remained open until relatively recently. In Appendix D of the book [1] by
Besse (a pseudonym of Marcel Berger), Berger uses an inequality of Kazdan (in Appendix
E of [1]) to show that the volume of a wiedersehen n-manifold is bounded from below by
the volume of the standard n-sphere with radius r = d/2pi. Weinstein [17] showed that
the volume of the wiedersehen manifold M is given by a cohomological computation on the
space of closed geodesics on M and used this to establish the Blaschke conjecture in even
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dimensions. C. T. Yang [19] carried out the cohomological computation in odd dimensions,
completing the proof of the Blaschke conjecture.

3. Blaschke’s influence on Chern

3.1. Chern’s early years. S. S. Chern first met Blaschke in 1932 when Blaschke visited
Peking where Chern was a young college student. According to Chern [7], Blaschke’s “in-
sistence mathematics to be a lively and intelligible subject” was instrumental in Chern’s
decision to study mathematics in Hamburg. Chern went to Hamburg in 1934 and received
his doctorate under the supervision of Blaschke in 1936. Chern also began to study exterior
differential systems and what is now known as Cartan-Kähler theory with Kähler. Blaschke
then arranged for Chern to spend a year in Paris with Elie Cartan to continue his studies.

Chern was able to use exterior differential forms quite effectively to extend Blaschke’s
ideas in differential and integral geometry to a more abstract framework. Calculations like
this led to Chern’s work on the volumes of tubes and eventually characteristic classes.

Inspired by earlier work of Lie and Poincaŕ, Blaschke and his student Bol [4] studied web
geometry. Chern and Griffiths [10, 11, 9] did some work on the subject. See, for example,
the survey of Chern [8] for more details.
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