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Abstract

The sharp affine isoperimetric inequality that bounds the vol-
ume of the centroid body of a star body (from below) by the
volume of the star body itself is the Busemann-Petty centroid in-
equality. A decade ago, the Lp analogue of the classical Busemann-
Petty centroid inequality was proved. Here, the definition of the
centroid body is extended to an Orlicz centroid body of a star
body, and the corresponding analogue of the Busemann-Petty cen-
troid inequality is established for convex bodies.

The centroids of the intersections of an origin-symmetric body with
half-spaces form the surface of a convex body. This “centroid body” is
a concept that dates back at least to Dupin.

The classical affine isoperimetric inequality that relates the volume
of a convex body with that of its centroid body was conjectured by
Blaschke and established in a landmark work by Petty [53]. Petty’s in-
equality became known as the Busemann-Petty centroid inequality be-
cause, in establishing his inequality, Petty not only made critical use of
Busemann’s random simplex inequality, but as Petty stated, he “rein-
terpreted” it. (See, e.g., the books by Gardner [12], Leichtweiss [25],
Schneider [55], and Thompson [58] for reference.)

The concept of a centroid body had a natural extension in what
became known as the Lp Brunn-Minkowski theory and its dual. This
theory had its origins in the early 1960s when Firey (see, e.g., Schneider
[55]) introduced his concept of Lp compositions of convex bodies. Three
decades later, in [34] and [35] these Firey-Minkowski Lp combinations
were shown to lead to an embryonic Lp Brunn-Minkowski theory. This
theory (and its dual) has witnessed a rapid growth. (See, e.g., [1–9,17–
23,26–32,34–44,46–48,54,56,57,59,62].)

The Lp analogues of centroid bodies became a central focus within
the Lp Brunn-Minkowski theory and its dual and establishing the Lp-
analogue of the Busemann-Petty centroid inequality became a major
goal. This was accomplished by the authors of the present paper in [37]
with an independent approach presented by Campi and Gronchi [3].
The Lp centroid bodies quickly became objects of interest in asymptotic
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geometric analysis (see, e.g., [10], [11], [24], [49], [50], [51], [52]) and even
the theory of stable distributions (see, e.g., [48]).

Using concepts introduced by Ludwig [29], Haberl and Schuster [21]
were led to establish “asymmetric” versions of the Lp Busemann-Petty
centroid inequality that, for bodies that are not origin-symmetric, are
stronger than the Lp Busemann-Petty centroid inequality presented in
[37] and [3]. The “asymmetric” inequalities obtained by Haberl and
Schuster are ideally suited for non-symmetric bodies. This can be seen
by looking at the Haberl-Schuster version of the Lp analogue of the
classical Blaschke-Santaló inequality that was presented in [46]. While
for origin symmetric bodies, the Lp extension of [46] does recover the
original Blaschke-Santaló inequality as p→∞, for arbitrary bodies only
the Haberl-Schuster version does so.

The works of Haberl and Schuster [21] (see also [22]), Ludwig and
Reitzner [32], and Ludwig [31] have demonstrated the clear need to
move beyond the Lp Brunn-Minkowski theory to what we are calling
an Orlicz Brunn-Minkowski theory. This need is not only motivated by
compelling geometric considerations (such as those presented in Ludwig
and Reitzner [32]), but also by the desire to obtain Sobolev bounds
(see [22]) of a far more general nature.

This paper is the second in a series intended to develop a few of the
elements of an Orlicz Brunn-Minkowski theory and its dual. Here we
define the Orlicz centroid body, establish some of its basic properties,
and most importantly establish (what we call) the Orlicz Busemann-
Petty centroid inequality (for Orlicz centroid bodies).

We consider convex φ : R → [0,∞) such that φ(0) = 0. This means
that φ must be decreasing on (−∞, 0] and increasing on [0,∞). We
require that one of these is happening strictly so; i.e., φ is either strictly
decreasing on (−∞, 0] or strictly increasing on [0,∞). The class of such
φ will be denoted by C.

If K is a star body (see Section 1 for precise definitions) with respect
to the origin in Rn with volume |K|, and φ ∈ C then we define the Orlicz
centroid body ΓφK of K as the convex body whose support function at
x ∈ Rn is given by

h(ΓφK;x) = inf
{
λ > 0 :

1
|K|

∫
K
φ
(x · y

λ

)
dy ≤ 1

}
,

where x ·y denotes the standard inner product of x and y in Rn and the
integration is with respect to Lebesgue measure in Rn.

When φp(t) = |t|p, with p ≥ 1, then

ΓφpK = ΓpK,
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where ΓpK is the Lp centroid body of K, whose support function is
given by

h(ΓpK;x)p =
1
|K|

∫
K
|x · y|p dy.

For p = 1 the body ΓpK is the classical centroid body, ΓK, of K.
We will establish the following affine isoperimetric inequality for Or-

licz centroid bodies.

Theorem. If φ ∈ C and K is a convex body in Rn that contains the
origin in its interior, then the volume ratio

|ΓφK|/|K|

is minimized if and only if K is an ellipsoid centered at the origin.

The theorem contains as a special case the classical Busemann-Petty
centroid inequality for convex bodies [53], as well as the Lp Busemann-
Petty centroid inequality for convex bodies that was established in [37]
and [3] and the “asymmetric” version of the Lp Busemann-Petty cen-
troid inequality for convex bodies that was established by Haberl and
Schuster [21].

For quick later reference, we list in Section 1 some basic, and for
the most part well-known, facts regarding convex bodies. The basic
properties of the Orlicz centroid operator are developed in Section 2.
In Section 3 the Theorem is established. Section 4 concludes with some
open problems.

1. Basics regarding convex and star bodies

The setting will be Euclidean n-space Rn. We write e1, . . . , en for the
standard orthonormal basis of Rn and when we write Rn = Rn−1 × R
we always assume that en is associated with the last factor.

We will attempt to use x, y for vectors in Rn and x′, y′ for vectors in
Rn−1. We will also attempt to use a, b, s, t for numbers in R and c, λ for
strictly positive reals. If Q is a Borel subset of Rn and Q is contained in
an i-dimensional affine subspace of Rn but in no affine subspace of lower
dimension, then |Q| will denote the i-dimensional Lebesgue measure of
Q. If x ∈ Rn then by abuse of notation we will write |x| for the norm
of x.

For A ∈ GL(n) write At for the transpose of A and A−t for the inverse
of the transpose (contragradient) of A. Write |A| for the absolute value
of the determinant of A.

We say that a sequence {φi}, of φi ∈ C, is such that φi → φo ∈ C
provided

|φi − φo|I := max
t∈I
|φi(t)− φo(t)| −→ 0,
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for every compact interval I ⊂ R. For φ ∈ C define φ? ∈ C by

(1.1) φ?(t) =
∫ 1

0
φ(ts) dsn,

where dsn = nsn−1ds. Obviously, φi → φo ∈ C implies φ?i → φ?o.
Associated with each φ ∈ C is cφ ∈ (0,∞) defined by

cφ = min{c > 0 : max{φ(c), φ(−c)} ≤ 1}.

Let ρ(K; ·) = ρK : Rn \ {0} → [0,∞) denote the radial function of
the set K ⊂ Rn, star-shaped about the origin; i.e. ρK(x) = max{λ >
0 : λx ∈ K}. If ρK is strictly positive and continuous, then we call K a
star body and we denote the class of star bodies in Rn by Sno . If c > 0,
then obviously for the dilate cK = {cx : x ∈ K} we have

(1.2) ρcK = cρK .

The radial distance between K,L ∈ Sno is

|ρK − ρL|∞ = max
u∈Sn−1

|ρK(u)− ρL(u)|.

Let h(K; ·) = hK : Rn → R denote the support function of the convex
body (compact convex subset) K in Rn; i.e., h(K;x) = max{x · y : y ∈
K}. The Hausdorff distance between the convex bodies K and L is

|hK − hL|∞ = max
u∈Sn−1

|hK(u)− hL(u)|.

We write Kn for the space of convex bodies of Rn. We write Kno for the
set of convex bodies that contain the origin in their interiors. On Kno
the Haudorff metric and the radial metric induce the same topology.

We shall require the obvious facts that for K,L ∈ Kn, we have

(1.3) K ⊂ L if and only if hK ≤ hL,

and that for c > 0 and x ∈ Rn,

(1.4) hcK(x) = chK(x) and hK(cx) = chK(x).

More generally, from the definition of the support function it follows
immediately that for A ∈ GL(n) the support function of the image
AK = {Ay : y ∈ K} of K is given by

(1.5) hAK(x) = hK(Atx).

For K ∈ Sno , define the real numbers RK and rK by

(1.6) RK = max
u∈Sn−1

ρK(u) and rK = min
u∈Sn−1

ρK(u).

Note that the definition of Sno is such that 0 < rK ≤ RK < ∞, for all
K ∈ Sno .
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ORLICZ CENTROID BODIES 5

Throughout, B = {x ∈ Rn : |x| ≤ 1} will denote the unit ball centered
at the origin, and ωn = |B| will denote its n-dimensional volume. We
shall make use of the trivial fact that for uo ∈ Sn−1,

(1.7) ωn−1 =
∫
Sn−1

(uo · u)+ dS(u) =
1
2

∫
Sn−1

|uo · u| dS(u),

where (t)+ = max{t, 0} for t ∈ R, and where S denotes Lebesgue mea-
sure on Sn−1; i.e., S is (n− 1)-dimensional Hausdorff measure.

For a convex body K and a direction u ∈ Sn−1, let Ku denote the
image of the orthogonal projection of K onto u⊥, the subspace of Rn

orthogonal to u. We write ` u(K; ·) : Ku → R and ` u(K; ·) : Ku → R
for the undergraph and overgraph functions of K in the direction u; i.e.

K =
{
y′ + tu : −` u(K; y′) ≤ t ≤ ` u(K; y′) for y′ ∈ Ku

}
.

Thus the Steiner symmetral SuK of K ∈ Kno in direction u can be
defined as the body whose orthogonal projection onto u⊥ is identical to
that of K and whose undergraph and overgraph functions are given by

` u(SuK; y′) =
1
2

[` u(K; y′) + ` u(K; y′)](1.8a)

and

` u(SuK; y′) =
1
2

[` u(K; y′) + ` u(K; y′)].(1.8b)

For y′ ∈ Ku, define my′ = my′(u) by

my′(u) =
1
2

[` u(K; y′)− ` u(K; y′)]

so that the midpoint of the chord K ∩ (y′ + Ru) is y′ + my′(u)u. The
length |K ∩ (y′ + Ru)| of this chord will be denoted by σy′ = σy′(u).
Note that the midpoints of the chords of K in the direction u lie in a
subspace if and only if there exists an x′o ∈ Ku such that

x′o · y′ = my′ , for all y′ ∈ Ku.

In this case {y′− ` u(K; y′)u : y′ ∈ relintKu}, the undergraph of K with
respect to u, is mapped into the overgraph by the linear transformation

y′ + tu 7−→ y′ + [2(x′o · y′)− t]u.
A classical characterization of the ellipsoid is the following: A convex

body K ∈ Kno is an origin centered ellipsoid if and only if for each
direction u ∈ Sn−1 all of the midpoints of the chords of K parallel to u
lie in a subspace of Rn. Gruber [15] showed how the following Lemma
is a consequence of the Gruber-Ludwig theorem [16]

Lemma 1.1. A convex body K ∈ Kno is an origin centered ellipsoid if
and only if there exists an εK > 0 such that for each direction u ∈ Sn−1

all of the chords of K that come within a distance of εK of the origin
and are parallel to u, have midpoints that lie in a subspace of Rn.
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When considering the convex body K ⊂ Rn−1×R, for (x′, t) ∈ Rn−1×
R we will usually write h(K;x′, t) rather than h(K; (x′, t)).

The following is well known:

Lemma 1.2. Suppose K ∈ Kno and u ∈ Sn−1. For y′ ∈ relintKu, the
overgraph and undergraph functions of K in direction u are given by

` u(K; y′) = min
x′∈u⊥

{
h(K;x′, 1)− x′ · y′

}
,(1.9a)

and

` u(K; y′) = min
x′∈u⊥

{
h(K;x′,−1)− x′ · y′

}
.(1.9b)

See [3] for an application of (1.9a) and (1.9b) to the proof of the Lp
Busemann-Petty centroid inequality.

Proof. Suppose x′ ∈ u⊥. From the definition of the overgraph it
follows immediately that y′ + ` u(K; y′)u ∈ K, and thus the definition
of the support function shows that

(y′ + ` u(K; y′)u) · (x′ + u) ≤ hK(x′ + u).

Thus,
x′ · y′ + ` u(K; y′) ≤ hK(x′ + u) = h(K;x′, 1),

for all x′ ∈ u⊥.
Since K has a support hyperplane at y′+ ` u(K; y′)u ∈ ∂K, and since

y′ ∈ relintKu, there exists a vector of the form x′o +u, with x′o ∈ u⊥, so
that

(y′ + ` u(K; y′)u) · (x′o + u) = hK(x′o + u) = h(K;x′o, 1).

Therefore,
` u(K; y′) = min

x′∈u⊥

{
h(K;x′, 1)− x′ · y′

}
.

Formula (1.9b) can be shown in the same way. q.e.d.

We shall require the following crude estimate.

Lemma 1.3. Suppose K ∈ Kno and u ∈ Sn−1. If y′ ∈ (rK/2)B ∩ u⊥,
and x′1, x

′
2 ∈ u⊥ are such that

` u(K; y′) = h(K;x′1, 1)− x′1 · y′

and
` u(K; y′) = h(K;x′2,−1)− x′2 · y′,

then both

|x′1|, |x′2| ≤
2RK
rK

.

PROOF COPY NOT FOR DISTRIBUTION
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Proof. Note that since y′ ∈ (rK/2)B∩u⊥, it follows that both ` u(K; y′) >
0 and ` u(K; y′) > 0.

Observe that since rKB ⊂ K, we have from (1.3),

(1.10) hK

(
(x′1, 1)√
1 + |x′1|2

)
≥ rK .

From the fact that K contains the origin in its interior, the definition
of RK and definition (1.9a), the hypothesis, (1.10) and (1.4), we have

RK ≥ ` u(K; y′)

= h(K;x′1, 1)− x′1 · y′

≥ rK(1 + |x′1|2)1/2 − x′1 · y′

≥ rK |x′1| − x′1 · y′

≥ rK |x′1| −
rK
2
|x′1|,

where the last step comes from the hypothesis that |y′| ≤ rK/2.
The estimate for |x′2| can be established in the identical manner.

q.e.d.

2. Definition and basic properties of Orlicz centroid bodies

If φ ∈ C, then the Orlicz centroid body ΓφK of K ∈ Sno is defined as
the body whose support function is given by

(2.1) hΓφK(x) = inf
{
λ > 0 :

1
|K|

∫
K
φ
(x · y

λ

)
dy ≤ 1

}
,

where the integration is with respect to Lebesgue measure on Rn. Ob-
serve that since lims→∞ φ(s) = ∞ or lims→−∞ φ(s) = ∞ we have
hΓφK(x) > 0 whenever x 6= 0.

It will be helpful to also use the alternate definition:

(2.2) hΓφK(x) = inf
{
λ > 0 :

∫
Sn−1

φ?( 1
λ(x · u)ρK(u)) dV ∗K(u) ≤ 1

}
,

where φ? is defined by (1.1) and dV ∗K is the volume-normalized dual
conical measure of K, defined by

|K|dV ∗K =
1
n
ρnK dS,

where S is Lebesgue measure on Sn−1 (i.e., (n − 1)-dimensional Haus-
dorff measure). We shall make use of the fact that the volume-normalized
dual conical measure

(2.3) V ∗K is a probability measure on Sn−1.
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8 ERWIN LUTWAK, DEANE YANG AND GAOYONG ZHANG

The equivalence of the two definitions is a consequence of the fact that

(2.4)
∫
K
φ(

1
λ
x · y) dy =

1
n

∫
Sn−1

φ?(
1
λ

(x · v)ρK(v))ρK(v)n dS(v).

To see (2.4) observe that:∫
K
φ(

1
λ
x · y) dy =

∫
Sn−1

∫ ρK(v)

0
φ(

1
λ

(x · v)r)rn−1 dr dS(v)

=
∫
Sn−1

(∫ 1

0
φ(

1
λ

(x · v)ρK(v)t)tn−1 dt

)
ρK(v)ndS(v)

=
1
n

∫
Sn−1

φ?(
1
λ

(x · v)ρK(v))ρK(v)n dS(v).

Since φ? is strictly increasing on [0,∞) or strictly decreasing on
(−∞, 0] it follows that the function

λ 7−→
∫
Sn−1

φ?( 1
λ(x · v)ρK(v)) dV ∗K(v)

is strictly decreasing in (0,∞). It is also continuous. Thus, we have:

Lemma 2.1. Suppose K ∈ Sno and uo ∈ Sn−1. Then∫
Sn−1

φ?( 1
λo

(uo · v)ρK(v)) dV ∗K(v) = 1

if and only if
hΓφK(uo) = λo.

Observe that (1.4) now shows that Lemma 2.1 holds for all uo ∈
Rn \ {0}.

We now demonstrate that (2.1) defines a convex body that containins
the origin in its interior.

Lemma 2.2. If K ∈ Sno then hΓφK is the support function of a body
in Kno .

Proof. Observe that it follows immediately from definition (2.1) that
for x ∈ Rn and c > 0,

hΓφK(cx) = c hΓφK(x).

We show that indeed for x1, x2 ∈ Rn,

hΓφK(x1 + x2) ≤ hΓφK(x1) + hΓφK(x2).

To that end let hΓφK(xi) = λi; i.e.,

(2.5)
∫
Sn−1

φ?
(
xi · u
λi

ρK(u)
)
dV ∗K(u) = 1.
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ORLICZ CENTROID BODIES 9

The convexity of the function s 7→ φ?(s ρK(u)) shows that

φ?
(
x1 · u+ x2 · u
λ1 + λ2

ρK(u)
)

≤ λ1

λ1 + λ2
φ?
(
x1 · u
λ1

ρK(u)
)

+
λ2

λ1 + λ2
φ?
(
x2 · u
λ2

ρK(u)
)
.

Integrating both sides of this inequality with respect to the measure V ∗K
and using (2.5) gives∫

Sn−1

φ?
(

(x1 + x2) · u
λ1 + λ2

ρK(u)
)
dV ∗K(u) ≤ 1,

which, using (2.2), gives the desired result that

hΓφK(x1 + x2) ≤ λ1 + λ2.

Thus hΓφK is indeed the support function of a compact convex set, and
since hΓφK > 0, we see that ΓφK ∈ Kno . q.e.d.

We shall require more than hΓφK > 0. Specifically,

Lemma 2.3. If K ∈ Sno , then

ωn−1r
n+1
K

ncφ? |K|
≤ hΓφK(u) ≤ RK

cφ?
,

for all u ∈ Sn−1.

Proof. Suppose uo ∈ Sn−1 and let hΓφK(uo) = λo; i.e.

(2.6)
∫
Sn−1

φ?
(
uo · u
λo

ρK(u)
)
ρK(u)n dS(u)

n |K|
= 1 .

To obtain the lower estimate we proceed as follows. From the defini-
tion of cφ? , either φ?(cφ?) = 1 or φ?(−cφ?) = 1. Suppose φ?(cφ?) = 1.
Then from the fact that φ? is non-negative and φ?(0) = 0, Jensen’s in-
equality, and definition (1.6) together with the fact that φ? is monotone
increasing on [0,∞) and (1.7),

φ?(cφ?) = 1

=
∫
Sn−1

φ?
(
uo · u
λo

ρK(u)
)
ρK(u)n dS(u)

n|K|

≥
∫
Sn−1

φ?
(

(uo · u)+

λo
ρK(u)

)
ρK(u)n dS(u)

n|K|

≥ φ?
(

1
n

∫
Sn−1

(uo · u)+

λo

ρK(u)n+1 dS(u)
|K|

)
≥ φ?

(
ωn−1r

n+1
K

nλo |K|

)
.
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Since φ? is monotone increasing on [0,∞), from this we obtain the lower
bound for hΓφK :

ωn−1r
n+1
K

ncφ? |K|
≤ λo.

The case where φ?(−cφ?) = 1 is handled the same way and gives the
same result.

To obtain the upper estimate, observe that from the definition of
cφ? , the fact that φ? is monotone decreasing on (−∞, 0] and mono-
tone increasing on [0,∞), together with the fact that the function
t 7→ max{φ?(t), φ?(−t)} is monotone increasing on [0,∞), definition
(1.6), and finally (2.3) it follows that

max{φ?(cφ?), φ?(−cφ?)}
= 1

=
∫
Sn−1

φ?
(
uo · u
λo

ρK(u)
)
dV ∗K(u)

≤
∫
Sn−1

max{φ?
(
|uo · u|ρK(u)

λo

)
, φ?

(
−|uo · u|ρK(u)

λo

)
} dV ∗K(u)

≤
∫
Sn−1

max{φ?(ρK(u)/λo), φ?(−ρK(u)/λo)} dV ∗K(u)

≤
∫
Sn−1

max{φ?(RK/λo), φ?(−RK/λo)} dV ∗K(u)

= max{φ?(RK/λo), φ?(−RK/λo)}.

But the even function t 7→ max{φ?(t), φ?(−t)} is monotone increasing
on [0,∞) so we conclude

λo ≤
RK
cφ?

.

q.e.d.

For c > 0, an immediate consequence of definition (2.2) and (1.2) is
the fact that

(2.7) ΓφcK = cΓφK.

We next show that the Orlicz centroid operator Γφ : Sno → Sno is
continuous.

Lemma 2.4. Suppose φ ∈ C. If Ki ∈ Sno and Ki → K ∈ Sno , then
ΓφKi → ΓφK.

Proof. Suppose uo ∈ Sn−1. We will show that

hΓφKi(uo)→ hΓφK(uo).

Let
hΓφKi(uo) = λi,
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and note that Lemma 2.3 gives

ωn−1r
n+1
Ki

ncφ? |Ki|
≤ λi ≤

RKi
cφ?

.

Since Ki → K ∈ Sno , we have rKi → rK > 0 and RKi → RK <∞, and
thus there exist a, b such that 0 < a ≤ λi ≤ b < ∞, for all i. To show
that the bounded sequence {λi} converges to hΓφK(uo), we show that
every convergent subsequence of {λi} converges to hΓφK(uo). Denote an
arbitrary convergent subsequence of {λi} by {λi} as well, and suppose
that for this subsequence we have

λi → λ∗.

Obviously, a ≤ λ∗ ≤ b. Let K̄i = λ−1
i Ki. Since λ−1

i → λ−1
∗ and

Ki → K, we have
K̄i → λ−1

∗ K.

Now (2.7), and the fact that hΓφKi(uo) = λi, shows that hΓφK̄i
(uo) = 1;

i.e. ∫
Sn−1

φ?((uo · u)ρK̄i(u)) dV ∗K̄i(u) = 1,

for all i. But K̄i → λ−1
∗ K and the continuity of φ? now give∫

Sn−1

φ?((uo · u)ρλ−1
∗ K(u)) dV ∗

λ−1
∗ K

(u) = 1,

which by Lemma 2.1 gives

hΓφλ
−1
∗ K(uo) = 1.

This, (2.7) and (1.4) now give

hΓφK(uo) = λ∗.

This shows that hΓφKi(uo)→ hΓφK(uo) as desired.
But for support functions on Sn−1 pointwise and uniform convergence

are equivalent (see, e.g., Schneider [55, p. 54]). Thus, the pointwise
convergence hΓφKi → hΓφK on Sn−1 completes the proof. q.e.d.

We next show that the Orlicz centroid operator is continuous in φ as
well.

Lemma 2.5. If φi ∈ C and φi → φ ∈ C, then ΓφiK → ΓφK, for each
K ∈ Sno .

Proof. Suppose K ∈ Sno and uo ∈ Sn−1. We will show that for the
support functions of the convex bodies ΓφiK we have

hΓφiK
(uo)→ hΓφK(uo).

Let
hΓφiK

(uo) = λi,
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12 ERWIN LUTWAK, DEANE YANG AND GAOYONG ZHANG

and note that Lemma 2.3 gives

ωn−1r
n+1
K

ncφ?i |K|
≤ λi ≤

RK
cφ?i

.

Since φ?i → φ? ∈ C, we have cφ?i → cφ? ∈ (0,∞) and thus there exist
a, b such that 0 < a ≤ λi ≤ b <∞, for all i.

To show that the bounded sequence {λi} converges to hΓφK(uo), we
show that every convergent subsequence of {λi} converges to hΓφK(uo).
Denote an arbitrary convergent subsequence of {λi} by {λi} as well,
and suppose that for this subsequence we have,

λi → λ∗.

Obviously, 0 < a ≤ λ∗ ≤ b. Since h(ΓφiK;uo) = λi,

1 =
∫
Sn−1

φ?i

(
uo · u
λi

ρK(u)
)
dV ∗K(u).

This, together with φ?i → φ? ∈ C and λi → λ∗, gives

1 =
∫
Sn−1

φ?
(
uo · u
λ∗

ρK(u)
)
dV ∗K(u).

But by Lemma 2.1 this gives

hΓφK(uo) = λ∗.

This shows that h(ΓφiK;uo)→ h(ΓφK;uo) as desired.
Since the support functions hΓφiK

→ hΓφK pointwise (on Sn−1) they
converge uniformly and hence

ΓφiK → ΓφK.

q.e.d.

The operator Γφ intertwines with elements of GL(n):

Lemma 2.6. Suppose φ ∈ C. For a star body K ∈ Sno and a linear
transformation A ∈ GL(n),

(2.8) Γφ(AK) = A(ΓφK).

Proof. From (2.7) it follows that we may assume, without loss of
generality, that A ∈ SL(n).

Suppose xo ∈ Rn and

h(ΓφAK;xo) = λo.
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ORLICZ CENTROID BODIES 13

From Lemma 2.1 and (2.4), the substitution z = Ay and the facts
that |AK| = |K| and dz = |A|dy = dy, we have

1 =
1
|AK|

∫
AK

φ(xo · z/λo) dz

=
1
|K|

∫
K
φ(xo ·Ay/λo) dy

=
1
|K|

∫
K
φ(Atxo · y/λo) dy.

But by Lemma 2.1, (2.4) and (1.5) this implies that

λo = h(ΓφK;Atxo) = h(AΓφK;xo),
giving h(ΓφAK;xo) = h(AΓφK;xo). q.e.d.

3. Proof of the Orlicz Busemann-Petty centroid inequality

The proof of our theorem makes critical use of:

Lemma 3.1. Suppose φ ∈ C, and K ∈ Kno . If u ∈ Sn−1 and x′1, x
′
2 ∈

u⊥, then

(3.1) h(Γφ(SuK); 1
2x
′
1 + 1

2x
′
2, 1) ≤ 1

2
h(ΓφK;x′1, 1) +

1
2
h(ΓφK;x′2,−1).

Equality in the inequality implies that all of the chords of K parallel to
u, whose distance from the origin is less than

rK
2 max{1, |x′1|, |x′2|}

,

have midpoints that lie in a subspace.

Proof. In light of Lemma 2.6 we may assume, without loss of gener-
ality, that |K| = 1 = |SuK|.

Let K ′ = Ku denote the image of the projection of K onto the sub-
space u⊥. For each y′ ∈ K ′, let σy′(u) = σy′ = |K ∩ (y′ + Ru)| be the
length of the chord K ∩ (y′+ Ru), and let my′ = my′(u) be defined such
that y′ +my′u is the midpoint of the chord K ∩ (y′ + Ru).

For λ1, λ2 > 0, we have∫
K
φ

(
(x′1, 1) · y

λ1

)
dy =

∫
K
φ

(
(x′1, 1) · (y′, s)

λ1

)
dy′ds

=
∫
K′
dy′
∫ my′+σy′/2

my′−σy′/2
φ

(
x′1 · y′ + s

λ1

)
ds

=
∫
K′
dy′
∫ σy′/2

−σy′/2
φ

(
x′1 · y′ + t+my′

λ1

)
dt

=
∫

SuK
φ

(
x′1 · y′ + t+my′(u)

λ1

)
dy′dt,

(3.2)

PROOF COPY NOT FOR DISTRIBUTION



14 ERWIN LUTWAK, DEANE YANG AND GAOYONG ZHANG

by making the change of variables t = −my′ + s, and

∫
K
φ

(
(x′2,−1) · y

λ2

)
dy =

∫
K
φ

(
(x′2,−1) · (y′, s)

λ2

)
dy′ds

=
∫
K′
dy′
∫ my′+σy′/2

my′−σy′/2
φ

(
x′2 · y′ − s

λ2

)
ds

=
∫
K′
dy′
∫ σy′/2

−σy′/2
φ

(
x′2 · y′ + t−my′

λ2

)
dt

=
∫

SuK
φ

(
x′2 · y′ + t−my′(u)

λ2

)
dy′dt,

(3.3)

by making the change of variables t = my′ − s.
Abbreviate

x′o = 1
2x
′
1 + 1

2x
′
2 and λo = 1

2λ1 + 1
2λ2,

and from the convexity of φ, follows
(3.4)

2φ
(
x′o ·y′ + t

λo

)
≤ λ1

λo
φ

(
x′1 ·y′ + t+my′

λ1

)
+
λ2

λo
φ

(
x′2 ·y′ + t−my′

λ2

)
.

From (3.2) - (3.4), we have

λ1

λo

∫
K
φ

(
(x′1, 1) · y

λ1

)
dy +

λ2

λo

∫
K
φ

(
(x′2,−1) · y

λ2

)
dy

=
λ1

λo

∫
SuK

φ

(
x′1 · y′ + t+my′(u)

λ1

)
dy′dt

+
λ2

λo

∫
SuK

φ

(
x′2 · y′ + t−my′(u)

λ2

)
dy′dt

≥ 2
∫

SuK
φ

(
(1

2x
′
1 + 1

2x
′
2) · y′ + t

1
2λ1 + 1

2λ2

)
dy′dt

= 2
∫

SuK
φ

(
(1

2x
′
1 + 1

2x
′
2, 1) · (y′, t)

1
2λ1 + 1

2λ2

)
dy′dt

= 2
∫

SuK
φ

(
(x′o, 1) · y

λo

)
dy.

(3.5)

Choose

λ1 = h(ΓφK;x′1, 1) and λ2 = h(ΓφK;x′2,−1);

recall that |K| = 1 and we have from Lemma 2.1,∫
K
φ

(
(x′1, 1) · y

λ1

)
dy = 1 and

∫
K
φ

(
(x′2,−1) · y

λ2

)
dy = 1.
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But this in (3.5), and the fact that | SuK| = 1 shows that

1 ≥ 1
|SuK|

∫
SuK

φ

(
(1

2x
′
1 + 1

2x
′
2, 1) · y

1
2λ1 + 1

2λ2

)
dy,

which by definition (2.1) gives

h(Γφ(SuK); 1
2x
′
1 + 1

2x
′
2, 1) ≤ 1

2λ1 + 1
2λ2,

with equality forcing (in light of the continuity of φ) equality in (3.4)
for all y′ ∈ K ′ and all t ∈ [−σy′/2, σy′/2].

This establishes the desired inequality.
Suppose there is equality. Hence there is equality in (3.4) for all

y′ ∈ K ′ and all t ∈ [−σy′/2, σy′/2].
From definition (1.6) of rK we see that if | y′| < rK/2 then

(−rK
2
,
rK
2

) ⊂ (my′ −
σy′

2
,my′ +

σy′

2
)(3.6a)

and therefore also

(−rK
2
,
rK
2

) ⊂ (−my′ −
σy′

2
,−my′ +

σy′

2
).(3.6b)

Suppose y′ is such that

| y′| < rK
2 max{1, |x′1|, |x′2|}

.

Then,

x′1 · y′ ∈ (−rK
2
,
rK
2

) and x′2 · y′ ∈ (−rK
2
,
rK
2

)

and from (3.6) it follows that

x′1 · y′ +my′ ∈ (−
σy′

2
,
σy′

2
) and x′2 · y′ −my′ ∈ (−

σy′

2
,
σy′

2
).

Thus, the linear functions

t 7→ x′1 · y′ + t+my′ and t 7→ x′2 · y′ + t−my′

both have their root in (−σy′/2, σy′/2). Thus, they either (1) have their
root at the same t = ty′ ∈ (−σy′/2, σy′/2) or (2) there will exist a
t = t?y′ ∈ (−σy′/2, σy′/2) at which these functions have opposite signs.

Consider case (2) first. The fact that

x′1 · y′ + t?y′ +my′ and x′2 · y′ + t?y′ −my′

have opposite signs tells us that

x′1 · y′ + t+my′ and x′2 · y′ + t−my′
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16 ERWIN LUTWAK, DEANE YANG AND GAOYONG ZHANG

have opposite signs for all t ∈ (t?y′ − δy′ , t?y′ + δy′) for some δy′ > 0. This
and the fact that there is equality in (3.4) together with the fact that
φ can not be linear in a neighborhood of the origin gives

x′1 ·y′ + t+my′

λ1
=
x′2 ·y′ + t−my′

λ2
,

for all t ∈ (t?y′ − δy′ , t?y′ + δy′) which contradicts the assumption that the
linear functions have opposite signs.

In case (1) the linear functions

t 7→ x′1 · y′ + t+my′ and t 7→ x′2 · y′ + t−my′

have a root at the same t = ty′ ∈ (−σy′/2, σy′/2) and this immediately
yields

(x′2 − x′1) · y′ = 2my′ .

But this means that for | y′| < rK/max{2, 2|x′1|, 2|x′2|}, the midpoints

{(y′,my′) : y′ ∈ K ′}

of the chords of K parallel to u lie in the subspace

{(y′, 1
2(x′2 − x′1) · y′) : y′ ∈ K ′}

of Rn. q.e.d.

As an aside, observe that the inequality of Lemma 3.1 could have
been presented as:

h(Γφ(SuK); 1
2x
′
1 + 1

2x
′
2,−1) ≤ 1

2
h(ΓφK;x′1, 1) +

1
2
h(ΓφK;x′2,−1).

If φ is assumed to be strictly convex, then the equality conditions of
the inequality in Lemma 3.1 are simple.

Lemma 3.2. Suppose φ is strictly convex and K ∈ Kno . If u ∈ Sn−1

and x′1, x
′
2 ∈ u⊥, then

h(Γφ(SuK); 1
2x
′
1 + 1

2x
′
2, 1) ≤ 1

2
h(ΓφK;x′1, 1) +

1
2
h(ΓφK;x′2,−1),

and

h(Γφ(SuK); 1
2x
′
1 + 1

2x
′
2,−1) ≤ 1

2
h(ΓφK;x′1, 1) +

1
2
h(ΓφK;x′2,−1).

Equality in either inequality, implies

h(ΓφK;x′1, 1) = h(ΓφK;x′2,−1)

and that all of the midpoints of the chords of K parallel to u lie in a
subspace.
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Proof. Observe that equality forces equality in (3.4) for all y′ ∈ K ′
and all t ∈ [−σy′/2, σy′/2]. But since φ is strictly convex this means
that we must have

(3.7)
x′1 ·y′ + t+my′

λ1
=
x′2 ·y′ + t−my′

λ2
,

for all t ∈ (−σy′/2, σy′/2). Choosing λ1 = h(ΓφK;x′1, 1) and λ2 =
h(ΓφK;x′2,−1), (3.7) immediately gives

h(ΓφK;x′1, 1) = λ1 = λ2 = h(ΓφK;x′2,−1),

and

(x′2 − x′1) · y′ = 2my′ ,

for all y′ ∈ K ′. But this means that the midpoints {(y′,my′) : y′ ∈ K ′}
of the chords of K parallel to u lie in the subspace

{(y′, 1
2

(x′2 − x′1) · y′) : y′ ∈ K ′}

of Rn. q.e.d.

The theorem will be proved using:

Lemma 3.3. Suppose φ ∈ C and K ∈ Kno . If u ∈ Sn−1, then

(3.8) Γφ(SuK) ⊂ Su(ΓφK).

If the inclusion is an identity then all of the chords of K parallel to u,
whose distance from the origin is less than

rK rΓφK

4RΓφK
,

have midpoints that lie in a subspace.

Proof. Suppose y′ ∈ relint (ΓφK)u. By Lemma 1.2 there exist x′1 =
x′1(y′) and x′2 = x′2(y′) in u⊥ such that

`u(ΓφK, y′) = hΓφK(x′1, 1)− x′1 · y′,
`u(ΓφK, y′) = hΓφK(x′2,−1)− x′2 · y′.

(3.9)
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18 ERWIN LUTWAK, DEANE YANG AND GAOYONG ZHANG

Now by (1.8), (3.9), followed by Lemma 3.1, and then Lemma 1.2 we
have

`u(Su(ΓφK); y′) =
1
2
`u(ΓφK; y′) +

1
2
`u(ΓφK; y′)

=
1
2
(
hΓφK(x′1, 1)− x′1 · y′

)
+

1
2
(
hΓφK(x′2,−1)− x′2 · y′

)
=

1
2
hΓφK(x′1, 1) +

1
2
hΓφK(x′2,−1)− (1

2x
′
1 + 1

2x
′
2) · y′

≥ hΓφ(SuK)(1
2x
′
1 + 1

2x
′
2, 1)− (1

2x
′
1 + 1

2x
′
2) · y′

≥ min
x′∈u⊥

{
hΓφ(SuK)(x

′, 1)− x′ · y′
}

= `u(Γφ(SuK); y′),

(3.10)

and

`u(Su(ΓφK); y′) =
1
2
`u(ΓφK; y′) +

1
2
`u(ΓφK; y′)

=
1
2
(
hΓφK(x′1, 1)− x′1 · y′

)
+

1
2
(
hΓφK(x′2,−1)− x′2 · y′

)
=

1
2
hΓφK(x′1, 1) +

1
2
hΓφK(x′2,−1)− (1

2x
′
1 + 1

2x
′
2) · y′

≥ hΓφ(SuK)(1
2x
′
1 + 1

2x
′
2,−1)− (1

2x
′
1 + 1

2x
′
2) · y′

≥ min
x′∈u⊥

{
hΓφ(SuK)(x

′,−1)− x′ · y′
}

= `u(Γφ(SuK); y′).

This establishes the inclusion.
Now suppose

Γφ(SuK) = Su(ΓφK).
Then by Lemma 1.2, for each y′ ∈ (ΓφK)u ∩ (rΓφK/2)B, there exist

x′1 = x′1(y′) and x′2 = x′2(y′) in u⊥ such that

`u(ΓφK, y′) = hΓφK(x′1, 1)− x′1 · y′,
`u(ΓφK, y′) = hΓφK(x′2,−1)− x′2 · y′,

(3.11)

and since Γφ(SuK) = Su(ΓφK), from (3.10) we see that

(3.12) hΓφ(SuK)(1
2x
′
1 + 1

2x
′
2, 1) =

1
2
hΓφK(x′1, 1) +

1
2
hΓφK(x′2,−1).

From Lemma 1.3 and (3.11), it follows that both

|x′1|, |x′2| ≤
2RΓφK

rΓφK
.

But now (3.12) and the equality conditions of Lemma 3.1 show that all
of the chords of K parallel to u, whose distance from the origin is less
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than
rK rΓφK

4RΓφK
,

have midpoints that lie in a subspace. q.e.d.

As a direct consequence of Lemma 1.1, we now have:

Corollary. Suppose φ ∈ C and K ∈ Kno . If u ∈ Sn−1, then

Γφ(SuK) ⊂ Su(ΓφK).

If the inclusion is an identity for all u, then K is an ellipsoid centered
at the origin.

The Corollary and a standard Steiner symmetrization argument now
yield:

Theorem. If φ ∈ C and K ∈ Kno , then the volume ratio |ΓφK|/|K|
is minimized if and only if K is an ellipsoid centered at the origin.

4. Open Problems

The class-reduction technique introduced in [33] can be used to show
that once the Busemann-Petty centroid inequality and its equality con-
ditions have been established for convex bodies (in fact for a much
smaller class of bodies) then one can easily extend the inequality and
its equality conditions to all star bodies. It was shown in [37] that
this is also the case for Lp centroid bodies. Does there exist a similar
class-reduction technique that is applicable for Orlicz centroid bodies?

Conjecture. If φ ∈ C and K ∈ Sno , then the volume ratio |ΓφK|/|K|
is minimized only by ellipsoids.

In [45], the Orlicz projection body ΠφK of a convex body K ∈ Kno ,
was defined as the convex body whose support function is given by

(4.1) hΠφK(x) = inf
{
λ > 0 :

∫
Sn−1

φ( 1
λ(x · u)ρK∗(u)) dVK(u) ≤ 1

}
,

where VK , the volume-normalized conical measure, is defined by

|K|dVK =
1
n
hK dSK ,

and SK is the classical Aleksandrov-Fenchel-Jessen surface area measure
of K. Let Π∗φK = (ΠφK)∗ denote the polar Orlicz projection body of
K. Compare definition (4.1) with definition (2.2).

In [45], the following inequality was established.

Orlicz Petty projection inequality. Suppose φ ∈ C is strictly
convex. If K ∈ Kno then the volume ratio

|Π∗φK|/|K|
is maximal if and only if K is an ellipsoid centered at the origin.
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The technique introduced in [33] shows that once the Petty Pro-
jection inequality has been established then one can easily derive the
Busemann-Petty centroid inequality as a consequence, and vice versa.
The same is true of the Lp Busemann-Petty centroid inequality and
the Lp Petty projection inequality. Is there an easy road from the Or-
licz Petty projection inequality to the Orlicz Busemann-Petty centroid
inequality? Is there an easy road from the Orlicz Busemann-Petty cen-
troid inequality to the Orlicz Petty projection inequality?
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[56] C. Schütt and E. Werner, Surface bodies and p-affine surface area, Adv. Math.
187 (2004), 98–145, MR2074173, Zbl 1089.52002.

[57] A. Stancu, The discrete planar L0-Minkowski problem, Adv. Math. 167 (2002),
160–174, MR1901250, Zbl 1005.52002.

PROOF COPY NOT FOR DISTRIBUTION



ORLICZ CENTROID BODIES 23

[58] A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Ap-
plications, vol. 63, Cambridge University Press, Cambridge, 1996, MR1406315,
Zbl 0868.52001.

[59] V. Umanskiy, On solvability of two-dimensional Lp-Minkowski problem, Adv.
Math. 180 (2003), 176–186, MR2019221, Zbl 1048.52001.

[60] E. Werner, On Lp-affine surface areas, Indiana Univ. Math. J. 56 (2007), 2305–
2323, MR2360611, Zbl 1132.52008.

[61] E. Werner and D.-P. Ye, New Lp affine isoperimetric inequalities, Adv. Math.
218 (2008), 762–780, MR2414321, Zbl 1155.52002.

[62] V. Yaskin and M. Yaskina, Centroid bodies and comparison of volumes, Indiana
Univ. Math. J. 55 (2006), 1175–1194, MR2244603, Zbl 1102.52005.

[63] G. Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999), 183–
202, MR1776095, Zbl 1040.53089.

Polytechnic Institute of NYU
Six MetroTech Center

Brooklyn NY 11201

PROOF COPY NOT FOR DISTRIBUTION


