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Craḿer-Rao and moment-entropy inequalities for
Renyi entropy and generalized Fisher information

Erwin Lutwak, Deane Yang, and Gaoyong Zhang

Abstract— The moment-entropy inequality shows that a con-
tinuous random variable with given second moment and maximal
Shannon entropy must be Gaussian. Stam’s inequality shows that
a continuous random variable with given Fisher information and
minimal Shannon entropy must also be Gaussian. The Craḿer-
Rao inequality is a direct consequence of these two inequalities.

In this paper the inequalities above are extended to Renyi
entropy, p-th moment, and generalized Fisher information. Gen-
eralized Gaussian random densities are introduced and shown to
be the extremal densities for the new inequalities. An extension of
the Cramér–Rao inequality is derived as a consequence of these
moment and Fisher information inequalities.

Index Terms— entropy, Renyi entropy, moment, Fisher infor-
mation, information theory, information measure

I. I NTRODUCTION

T HE moment-entropy inequality shows that a continuous
random variable with given second moment and maximal

Shannon entropy must be Gaussian (see, for example, Theorem
9.6.5 in [1]). This follows from the nonnegativity of the
relative entropy of two continuous random variables. In this
paper we introduce the notion of relative Renyi entropy for two
random variables and show that it is always nonnegative. We
identify the probability distributions that have maximal Renyi
entropy with givenp–th moment and call them generalized
Gaussians.

In his proof of the Shannon entropy power inequality Stam
[2] shows that a continuous random variable with given Fisher
information and minimal Shannon entropy must be Gaussian.
We introduce below a generalized form of Fisher information
associated with Renyi entropy and that is, in some sense, dual
to thep–th moment. A generalization of Stam’s inequality is
established. The probability distributions that have maximal
Renyi entropy with given generalized Fisher information are
the generalized Gaussians.

The Craḿer-Rao inequality (see, for example, Theorem
12.11.1 in [1]) states that the second moment of a continuous
random variable is bounded from below by the reciprocal
of its Fisher information. We use the moment and Fisher
information inequalities to establish a generalization of the
Craḿer–Rao inequality, where a lower bound is obtained for
the p-th moment of a continuous random variable in terms
of its generalized Fisher information. Again, the generalized
Gaussians are the extremal distributions.
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G. Zhang (gzhang@poly.edu ) are with the Department of Mathematics,
Polytechnic University, Brooklyn, New York and were supported in part by
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Analogues for convex and star bodies of the moment-
entropy, Fisher information-entropy, and Cramér-Rao inequal-
ities had been established earlier by the authors [3], [4], [5],
[6], [7]

II. D EFINITIONS

Throughout this paper, unless otherwise indicated, all inte-
grals are with respect to Lebesgue measure over the real line
R. All densities are probability densities onR.

A. Entropy

The Shannon entropyof a densityf is defined to be

h[f ] = −
∫

R
f log f, (1)

provided that the integral above exists. Forλ > 0 theλ-Renyi
entropy powerof a density is defined to be

Nλ[f ] =


(∫

R
fλ

) 1
1−λ

if λ 6= 1,

eh[f ] if λ = 1,

(2)

provided that the integral above exists. Observe that

lim
λ→1

Nλ[f ] = N1[f ].

The λ–Renyi entropyof a densityf is defined to be

hλ[f ] = log Nλ[f ].

The entropyhλ[f ] is continuous inλ and, by the Ḧolder
inequality, decreasing inλ. It is strictly decreasing, unlessf
is a uniform density.

B. Relative entropy

Given two densitiesf, g : R → R, their relative Shannon
entropyor Kullback–Leibler distance[11], [12], [13] (also, see
page 231 in [1]) is defined by

h1[f, g] =
∫

R
f log

(
f

g

)
, (3)

provided that the integral above exists. Givenλ > 0 and
two densitiesf andg, we define therelativeλ–Renyi entropy
power off and g as follows. Ifλ 6= 1, then

Nλ[f, g] =

(∫
R

gλ−1f

) 1
1−λ

(∫
R

gλ

) 1
λ

(∫
R

fλ

) 1
λ(1−λ)

, (4)
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and, if λ = 1, then

N1[f, g] = eh1[f,g],

provided in both cases that the righthand side exists. Define
the λ–Renyi relative entropy off and g by

hλ[f, g] = log Nλ[f, g].

Observe thathλ[f, g] is continuous inλ.
Lemma 1: If f and g are densities such thathλ[f ], hλ[g],

andhλ[f, g] are finite, then

hλ[f, g] ≥ 0.

Equality holds if and only iff = g.
Proof: The caseλ = 1 is well–known (see, for example,

page 234 in [1]). The remaining cases are a direct consequence
of the Hölder inequality. Ifλ > 1, then we have∫

R
gλ−1f ≤

(∫
R

gλ

)λ−1
λ
(∫

R
fλ

) 1
λ

,

and if λ < 1, then we have∫
R

fλ =
∫

R
(gλ−1f)λgλ(1−λ)

≤
(∫

R
gλ−1f

)λ(∫
R

gλ

)1−λ

.

The equality conditions follow from the equality conditions of
the Hölder inequality.

C. Thep-th moment

For p ∈ (0,∞) definep-th momentof a densityf to be

µp[f ] =
∫

R
|x|pf(x) dx, (5)

provided that the integral above exists. Forp ∈ [0,∞] define
the p-th deviationby

σp[f ] =



exp
(∫

R
f(x) log |x| dx

)
if p = 0,

(µp[f ])
1
p if 0 < p < ∞,

ess sup{|x| : f(x) > 0} if p = ∞,

(6)

provided in each case that the right side is finite. The deviation
σp[f ] is continuous inp and, by the Ḧolder inequality, strictly
increasing inp.

D. The(p, λ)-th Fisher information

Recall that the classical Fisher information [14], [15], [16]
of a densityf : R → R is given by

φ2,1[f ]2 =
∫

R
f−1|f ′|2,

provided f is absolutely continuous, and the integral exists.
If p ∈ [1,∞] and λ ∈ R, we denote the(p, λ)-th Fisher

informationof a densityf by φp,λ[f ] and define it as follows.
If p ∈ (1,∞), let q ∈ (1,∞] satisfyp−1+q−1 = 1, and define

φp,λ[f ]qλ =
∫

R
|fλ−2f ′|qf, (7)

provided thatf is absolutely continuous, and the norm above
is finite. If p = 1, thenφp,λ[f ]λ is defined to be the essential
supremum of|fλ−2f ′| on the support off , provided f is
absolutely continuous, and the essential supremum is finite.
If p = ∞, then φp,λ[f ]λ is defined to be the total variation
of fλ/λ, provided thatfλ has bounded variation. (see, for
example, [17] for a definition of “bounded variation”).

Note that our definition of generalized Fisher information
has a different normalization than the standard definition. In
particular, the classical Fisher information corresponds to the
square of(2, 1)-th Fisher information, as defined above.

The Fisher informationφp,λ[f ] is continuous in(p, λ). For
a givenλ it is, by the Ḧolder inequality, decreasing inp.

E. Generalized Gaussian densities

Given t ∈ R, let

t+ = max{t, 0}.

Let

Γ(t) =
∫ ∞

0

xt−1e−x dx

denote the Gamma function, and let

β(a, b) =
Γ(a)Γ(b)
Γ(a + b)

denote the Beta function.
For eachp ∈ [0,∞] and λ > 1 − p, we define the

correspondinggeneralized Gaussian densityG : R → [0,∞)
as follows. If p ∈ (0,∞), thenG is defined by

G(x) =

{
ap,λ(1 + (1− λ)|x|p)

1
λ−1
+ if λ 6= 1,

ap,1e
−|x|p if λ = 1,

(8)

where

ap,λ =



p(1− λ)
1
p

2β( 1
p , 1

1−λ −
1
p )

if λ < 1,

p

2Γ( 1
p )

if λ = 1,

p(λ− 1)
1
p

2β( 1
p , λ

λ−1 )
if λ > 1.

If p = 0 andλ > 1, thenG is defined for almost everyx ∈ R
by

G(x) = a0,λ(− log |x|)
1

λ−1
+ ,

where
a0,λ =

1
2Γ( λ

λ−1 )
.

If p = ∞ andλ > 0, thenG is defined by

G(x) =


1
2

if |x| ≤ 1

0 if |x| > 1.
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For consistency we shall also denotea∞,λ = 1
2 .

For t > 0, defineGt : R → [0,∞) by

Gt(x) = G(x/t)/t. (9)

Sz. Nagy [8] established a family of sharp Gagliardo-
Nirenberg inequalities onR and their equality conditions.
His results can be used to prove Theorem 3 and identify
the generalized Gaussians as the extremal densities for the
inequalities proved in this paper. Later, Barenblatt [9] showed
that the generalized Gaussians are also the self–similar so-
lutions of theLp porous media and fast diffusion equations.
Generalized Gaussians are also the1-dimensional versions of
the extremal functions for sharp Sobolev, log-Sobolev, and
Gagliardo-Nirenberg inequalities (see, for example, [10]).

F. Information measures of generalized Gaussians

If 0 < p < ∞ and λ > 1/(1 + p), the λ–Renyi entropy
power of the generalized GaussianG defined by (8) is given
by

Nλ[G] =


(

pλ

pλ + λ− 1

) 1
1−λ

a−1
p,λ if λ 6= 1

e
1
p a−1

p,1 if λ = 1

If p = 0 andλ > 1, then

Nλ[G] =
(

λ

λ− 1

) 1
1−λ

a−1
0,λ.

If p = ∞ andλ > 0, then

Nλ[G] = 2. (10)

If 0 < p < ∞ andλ > 1/(1 + p), then thep–th deviation
of G is given by

σp[G] = (pλ + λ− 1)−
1
p .

If p = 0 andλ > 1, then

σ0[G] = e−
λ

λ−1 .

If p = ∞, then
σ∞[G] = 1.

If 1 ≤ p ≤ ∞ andλ > 1/(1 + p), then the(p, λ)-th Fisher
information of the generalized GaussianG is given by

φp,λ[G] =

{
p1/λa

(λ−1)/λ
p,λ (pλ + λ− 1)−(1− 1

p )/λ if p < ∞,

2(1−λ)/λ/λ1/λ if p = ∞.

In particular, observe that if1 ≤ p ≤ ∞ andλ > 1/(1+p),
then

Nλ[G]1−λ = λσp[G]φp,λ[G]λ. (11)

Observe that ifλ 6= 1, then∫
R

Gλ = aλ−1
p,λ (1 + (1− λ)µp[G]), (12)

and if λ = 1, then

h[G] = − log ap,1 + µp[G]. (13)

We will also need the following simple scaling identities:∫
R

Gλ
t = t1−λ

∫
R

Gλ, (14)

and

σp[Gt] = tσp[G]. (15)

III. T HE MOMENT INEQUALITY

It is well known that among all probability distributions with
given second moment, the Gaussian is the unique distribution
that maximizes the Shannon entropy. This follows from the
positivity of the relative entropy of a given distribution and
a Gaussian distribution of the same variance. This result is
generalized top-th moments in Chapter 11 of [1].

We show that a similar inequality for thep-th moment and
λ–Renyi entropy follows from the positivity of theλ–Renyi
relative entropy of a given distribution and the appropriate
extremal distribution with the samep-th moment.

Theorem 2:Let f : R → R be a density. Ifp ∈ [0,∞],
λ > 1/(1 + p), andNλ[f ], σp[f ] < ∞, then

σp[f ]
Nλ[f ]

≥ σp[G]
Nλ[G]

, (16)

whereG is given by (8). Equality holds if and only iff = Gt

for somet ∈ (0,∞).
Proof: For convenience leta = ap,λ. Let

t =
σp[f ]
σp[G]

. (17)

First, consider the caseλ 6= 1. If p ∈ (0,∞), then by (8)
and (9), (5), (17), and (12),∫

R
Gλ−1

t f

≥ aλ−1t1−λ + (1− λ)aλ−1t1−λ−p

∫
R
|x|pf(x) dx

= aλ−1t1−λ(1 + (1− λ)t−pµp[f ])

= aλ−1t1−λ(1 + (1− λ)µp[G])

= t1−λ

∫
R

Gλ, (18)

where equality holds ifλ < 1. For p = ∞ observe thatf
vanishes outside the interval[−t, t] and therefore by (8) and
(9) and (6),∫

R
Gλ−1

t f = aλ−1t−λ+1

∫ t

−t

f(x) dx

= aλ−1t−λ+1

= t−λ+1

∫
R

Gλ. (19)

It follows that if p ∈ (0,∞] and λ 6= 1, then by Lemma 1,
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(4), (18), (19), and (14), and (17), we have

1 ≤ Nλ[f,Gt]λ

=
(∫

R
Gλ

t

)(∫
R

fλ

)− 1
1−λ

(∫
R

Gλ−1
t f

) λ
1−λ

≤ t
Nλ[G]
Nλ[f ]

=
σp[f ]
Nλ[f ]

Nλ[G]
σp[G]

.

(20)

If λ = 1 and p ∈ (0,∞), then by Lemma 1, (3), (8), and
(9), and (17) and (13), we have

0 ≤ h1[f,Gt]
= −h[f ]− log a + log t + t−pµp[f ]
= h[G]− h[f ] + log σp[f ]− log σp[G].

If λ = 1 andp = ∞, then by Lemma 1, (3), (1), (8) and (9),
and (17), (1), and (6),

0 ≤ h1[f,Gt]

=
∫

R
f log f −

∫
R

f log Gt

= −h[f ]− log a + log t

= −h[f ] + h[G] + log σ∞[f ]− log σ∞[G].

This gives inequality (16) forp = ∞.
If p = 0 andλ > 1, then from (8) and (6), we have∫

R
Gλ = −aλ−1 log σ0[G]. (21)

Therefore, by (8) and (9), (6), (17), and (21),∫
R

Gλ−1
t f

≥ aλ−1t−λ+1

∫
R
(log t− log |x|)f(x) dx

= aλ−1t−λ+1(log t− log σ0[f ])

= −t−λ+1aλ−1 log σ0[G]

= t−λ+1

∫
R

Gλ.

The inequality forp = 0 andλ > 1 now follows from (20).
In all cases, Lemma 1 shows that equality holds if and only

if f = Gt.
A higher dimensional version of Theorem 2 was established

by the authors in [7]. The casep = 2 of Theorem 2 was also
established independently by Costa, Hero, and Vignat [18].

It is also worth noting that Arikan [19] obtains a moment-
entropy inequality for discrete random variables analogous to
Theorem 2. His inequality, however, is for the limiting case
λ = 1/(1 + p), where Theorem 2 does not apply.

IV. T HE FISHER INFORMATION INEQUALITY

Stam’s inequality [2] shows that among all probability
distributions with given Fisher information, the unique dis-
tribution that minimizes Shannon entropy is Gaussian. The
following theorem extends this fact toλ–Renyi entropy and
(p, λ)-th Fisher information.

Theorem 3:Let p ∈ [1,∞], λ ∈ (1/(1 + p),∞), and f :
R → [0,∞) be a density. Ifp < ∞, thenf is assumed to be
absolutely continuous; ifp = ∞, thenfλ is assumed to have
bounded variation. IfNλ[f ], φp,λ[f ] < ∞, then

φp,λ[f ]Nλ[f ] ≥ φp,λ[G]Nλ[G], (22)

where G is the generalized Gaussian. Equality holds if and
only if there existt > 0 andx0 ∈ R such thatf(x) = Gt(x−
x0), for all x ∈ R.

As mentioned earlier, Theorem 3, including its equality
conditions, follow from sharp analytic inequalities established
by Sz. Nagy [8]. Inequality (22) complements the sharp
Gagliardo-Nirenberg inequalities onRn, with n ≥ 2 and
n/(n − 1) < p ≤ ∞, established by Del Pino and Dolbeault
[10] and generalized by Cordero, Nazaret, and Villani [20].
The proof presented here is inspired by the beautiful mass
transportation proof of Cordero et al. Observe, however, that
there is no overlap between their inequalities and ours.

Before giving the proof of this theorem, we need a change
of random variable formula and a lemma on integration by
parts.

A. Change of random variable

Let X be a random variable with densityf . Let the support
of f be contained in an interval(S, T ). Given an increasing
absolutely continuous functiony : (S, T ) → R, the random
variableY = y(X) has densityg, where

f(x) = g(y(x))y′(x),

for almost everyx, andg(z) = 0, for eachz ∈ R\y((S, T )).
Therefore, ifNλ[g] < ∞, then

Nλ[g] =


(∫ T

S

fλ(y′)1−λ

) 1
1−λ

if λ 6= 1,

eh[g] if λ = 1,

(23)

where

h[g] = h[f ] +
∫ T

S

f(x) log y′(x) dx. (24)

Similarly, if the p-th moment ofg is finite, then it is given by

µp[g] =
∫ T

S

|y(x)|pf(x) dx. (25)

B. Integration by parts

Lemma 4:Let S, T ∈ [−∞,∞] andf : (S, T ) → R be an
absolutely continuous function such that

lim
x→S

f(x) = lim
x→T

f(x) = 0. (26)

Let g : (S, T ) → R be an increasing absolutely continuous
function such that

lim
t→T

g(t) > 0,

and the integral ∫ T

S

f ′g
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is absolutely convergent. Then∫ T

S

fg′ = −
∫ T

S

f ′g.

Proof: It suffices to prove

lim
s→S

f(s)g(s) = lim
t→T

f(t)g(t) = 0.

The same proof works for both limits, so we will show only
that the right limit vanishes.

0 = lim
t→T

∫ T

t

|f ′(x)g(x)| dx

≥ lim
t→T

|g(t)|
∫ T

t

|f ′(x)| dx

≥ lim
t→T

|g(t)|

∣∣∣∣∣
∫ T

t

f ′(x) dx

∣∣∣∣∣
= lim

t→T
|g(t)f(t)|.

C. Proof of Theorem 3

Let g be a density that is supported on an open interval
(−R,R) for someR ∈ (0,∞]. Let S, T ∈ [−∞,∞] be such
that (S, T ) is the smallest interval containing the support of
f . Definey : (S, T ) → (−R,R) so that for eachx ∈ (S, T ),∫ x

S

f(s) ds =
∫ y(x)

−R

g(t) dt.

Observe that ifX is a random variable with densityf , then
the random variableY = y(X) has densityg.

If λ 6= 1 and p < ∞, then by (2) and (23), Ḧolder’s
inequality, Lemma 4, Ḧolder’s inequality again, and (6) and
(7), we have

Nλ[f ]−λNλ[g]

=

(∫ T

S

fλ

)− λ
1−λ

(∫ T

S

fλ(y′)1−λ

) 1
1−λ

≤
∫ T

S

fλy′

= −
∫ T

S

(fλ)′y

= −λ

∫ T

S

(yf1/p)(fλ−1−1/pf ′)

≤ λ

(∫
R
|y|pf)

)1/p(∫
R
|fλ−1−1/pf ′|q

)1/q

≤ λσp[g]φp,λ[f ]λ,

(27)

whereq is the Ḧolder conjugate ofp.
If λ = 1 and p < ∞, then by (24), Jensen’s inequality,

Lemma 4, Ḧolder’s inequality, and (6) and (7), we have

h[g] = h[f ] +
∫ T

S

f log y′

≤ h[f ] + log
∫ T

S

fy′

= h[f ] + log
∫ T

S

−f ′y

≤ h[f ] + log
(∫

R
|(log f)′|qf

) 1
q
(∫

R
|y|pf

) 1
p

= h[f ] + log φp,1[f ]σp[g],

(28)

whereq is the Ḧolder conjugate ofp.
By the equality conditions of the Ḧolder inequality, equality

holds for (27) and (28), only if there exist forc1, c2, x0 ∈
R such thaty = c1(x − x0), and f satisfies the differential
equation

(f(x)λ)′ = c2|x− x0|p−2(x− x0)f(x).

This, in turn, implies that there existτ, t > 0 andx0 ∈ R such
that g = Gτ and f(x) = Gt(x − x0), for all x ∈ R. On the
other hand, by (11) equality always holds for (22) iff = Gt.

If p = ∞, let g be compactly supported on the interval
(−R,R) with R < ∞, and extend the domain ofy to the
entire real line by settingy(x) = −R for all x ∈ (−∞, S]
andy(x) = R for all x ∈ [T,∞). Following the same line of
reasoning as (27), we get

Nλ[f ]−λNλ[g] ≤ −
∫ T

S

(fλ)′y

≤ R

∫
R
|(fλ)′|

= λσ∞[g]φ∞,λ[f ]λ.

Equality holds if and only if there existc1, c2, x0 ∈ R such
that y = c1(x − x0), and |y| is constant on the support of
(fλ)′. This is possible only ifS, T < ∞, andf is a uniform
density for the interval[S, T ]. In other words,f = Gt, for
somet ∈ (0,∞).

V. THE CRAMÉR–RAO INEQUALITY

The following theorem generalizes the classical Cramér–
Rao inequality [21], [22] (also, see Theorem 12.11.1 in [1]).

Theorem 5:Let p ∈ [1,∞], λ ∈ (1/(1 + p),∞), and f
be a density. Ifp < ∞, then f is assumed to be absolutely
continuous; ifp = ∞, then fλ is assumed to have bounded
variation. If σp[f ], φp,λ[f ] < ∞, then

σp[f ]φp,λ[f ] ≥ σp[G]φp,λ[G].

Equality holds if and only iff = Gt, for somet > 0.
The inequality is a direct consequence of (16) and (22).

VI. I NEQUALITIES FORSHANNON AND QUADRATIC

ENTROPY

The casep = 1 and λ = 1 of these theorems give the
following.
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Corollary 6: If f : R → R is an absolutely continuous
density with finite Shannon entropy, first moment, and(1, 1)-
th Fisher information, then

(sup |(log f)′|)−1 ≤ N1[f ]
2e

≤
∫

R
|x|f(x) dx.

Equality holds for the first inequality if and only if there exist
t > 0 andx0 ∈ R such that

f(x) =
1
2t

e−|x−x0|/t, (29)

for all x ∈ R. Equality holds for the second inequality if and
only if there existst > 0 such that (29) holds withx0 = 0.

The casesp = 1, 2 andλ = 2 give the following inequalities
for quadratic entropy.

Corollary 7: If f : R → R is an absolutely continuous
density with finite2-Renyi entropy, first moment, and(1, 2)-
th Fisher information, then

2
9

(∫
R
|x|f(x) dx

)−1

≤
∫

R
f2 ≤ 2

3
(sup |f ′|)1/2

.

Equality holds for the left inequality if and only if there exist
t > 0 andx0 ∈ R such that

f(x) = (1− |x− x0|/t)+/t, (30)

for all x ∈ R. Equality holds for the right inequality if and
only if there existst > 0 such that (30) holds withx0 = 0.

Corollary 8: If f : R → R is an absolutely continuous
density with finite 2-Renyi entropy, second moment, and
(2, 2)-th Fisher information, then

3
53/2

(∫
R

x2f(x) dx

)−1/2

≤
∫

R
f2 ≤ 61/2

53/4

(∫
R
(f ′)2f

)1/4

Equality holds for the left inequality if and only if there exist
t > 0 andx0 ∈ R such that

f(x) = (1− |x− x0|2/t2)+/t, (31)

for all x ∈ R. Equality holds for the right inequality if and
only if there existst > 0 such that (31) holds withx0 = 0.
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