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In §2 of Gromov’s book Partial Differential Relations [1], he proves that there exist many
linear inhomogeneous underdetermined systems of PDE’s of the form

Du = f

that can be solved with an arbitrary righthand side f by differentiating f rather than using
an integral operator, which is the usual practice. This is completely counterintuitive for
people working in analysis.

In §1 I describe an example of how this works. In subsequent sections I describe how
Gromov’s approach can be explained and extended using Pfaff’s theorem for a nondegenerate
differential 1-form. I would like to thank Robert Bryant for explaining all of this to me.

1. Examples

A trivial example is the underdetermined PDE

n∑
i=1

ai∂iu+ v = f,

which can be solved by simply setting u = 0 and v = f . Here, we work through a more
interesting example that Gromov often mentions.

Given smooth functions a and b satisfying a non-degeneracy condition (to be determined
below), we want, for any smooth function f on R, to find explicit pointwise formulas (in
terms of a, b, and f) for functions u and v on a neighborhood of 0 ∈ R that satisfy the ODE

(1) au′ + bv′ = f,

The differential operator on the left is

D =
[
a b

] d
dx
,

and the ODE can be written as

D

[
u
v

]
=
[
f
]
.

To solve the PDE for any function f , it suffices to find a right inverse R : C∞((−δ, δ))→
C∞((−δ, δ),R2), for some δ > 0, such that

(2) DR = I.
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Gromov’s brilliant insight is that many underdetermined partial differential operators have
a right inverse that is also a partial differential operator and that the right inverse can be
found by a pointwise algebraic calculation.

For this particular example, we can solve for R assuming that it is a zero-th differential
operator, i.e. a matrix-valued function

R =

[
p
q

]
.

However, if we use (2) directly, we get a system of ODE’s for the components of R, which
has only made the problem more difficult and not easier.

The trick is to note that (2) holds if and only if the formal adjoints of R and D satisfy

(3) R∗D∗ = I,

where

D∗f =
d

dx

[
a
b

]
f =

[
af ′ + a′f
bf ′ + b′f

]
and

R∗ =
[
p q

]
.

We therefore want to solve for p and q such that for any f ,

f = R∗D∗f

= p(af ′ + a′f) + q(bf ′ + b′f)

= (pa+ qb)f ′ + (pa′ + qb′)f.

This in turn is equivalent to the equations

pa+ qb = 0

pa′ + qb′ = 1,

which, if

(4) 0 6= det

[
a b
a′ b′

]
= ab′ − a′b,

is easily solved:

p =
−b

ab′ − a′b
, q =

a

ab′ − a′b
.

Unwinding everything, this implies that for any function f the functions

(5) u =
−b

ab′ − a′b
f and v =

a

ab′ − a′b
f

satisfy (1). Note that verifying this directly requires a calculation whose outcome is not
obvious.

The nondegeneracy condition required here is that

a′b− ab′ 6= 0.
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This is the Wronskian of a and b, and a natural question is why this is relevant. Recall that
if a is nonzero on an interval, then the Wronskian vanishes if and only if b = ca for some
constant c. Therefore, the ODE is of the form

(u+ cv)′ =
f

a
,

which can be solved only via integration.

2. Generalization to underdetermined systems of PDE’s

In general, a differential operator R∗ of some order satisfying (3) exists if and only if the
coefficients of R∗ satisfy a pointwise linear system of equations, whose coefficients are the
coefficients of D∗ and their derivatives. Therefore, if the number of equations in this system
is less than or equal to the number of unknowns (the number of coefficients of R) and the
system has maximal rank, then a solution always exists.

Gromov shows that if the number of equations in the original system is sufficently less than
the number of unknown functions, then the system (3) for a generic differential operator has
maximal rank and therefore (3) has a solution.

He uses this result in Chapter 3 of [1] to reduce the codimension needed for the existence of
local isometric embeddings of a generic Riemannian metic and global isometric embeddings
of generic Riemannian metrics on manifolds that have certain specified topological types
such as the torus.

3. Solving an underdetermined ODE via Pfaff

Robert Bryant was kind enough to explain how the approach described in §1 can be for-
mulated and extended using exterior differential systems. The overall point is that solutions
to (1) correspond to integral curves of a 1-form, which is a contact form if (4) holds. Pfaff’s
theorem states that there exist co-ordinates for which the contact form is in normal form.
Here, these co-ordinates can be written down explicitly. These formulas can in turn be used
to obtain all solutions to (1) using only formal differentiation and linear algebra.

In fact, everything presented here, both Gromov’s approach and the one described below,
works for any first order linear ODE with two unknown functions:

(6) a1u
′ + a0u+ b1v

′ + b0v = f.

I show below how to find all solutions to this ODE.
Given co-ordinates x, u, v on R3, set

θ = a1 du+ b1 dv − (f − a0u− b0v) dx(7)

= d(au+ bv)− (f + (a′1 − a0)u+ (b′1 − b0)v) dx

= dy − p dx,(8)

where

(9) y = au+ bv and p = f + Au+Bv

and
A = a′1 − a0 and B = b′1 − b0.

A straightforward calculation shows that

dx ∧ dy ∧ dp = −θ ∧ dθ = (a1B − b1A)dx ∧ du ∧ dv.
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Therefore, x, y, p are co-ordinates on R3 if and only if θ ∧ dθ is nonzero everywhere, which
in turn holds if and only

(10) a1B − b1A 6= 0,

The functions u(x) and v(x) give a solution to (1) if and only if the curve

C = {(x, u(x), v(x)) : x ∈ R} ⊂ R3

is an integral curve of θ on which dx is nowhere vanishing. On the other hand, x, y, p are
also co-ordinates on this space if and only if

0 6= dx ∧ dy ∧ dp
= dx ∧ (a′1u dx+ a1 du+ b′1v dx+ b1 dv) ∧ ((f ′ + A′u+B′v) dx+ Adu+B dv)

= (a1B − b1A)dx ∧ du ∧ dv.
If we assume the nondegeneracy condition then θ vanishes on a curve C if and only if

there exists a function g(x) such that for any x ∈ R,

(x, y, p) = (x, g(x), g′(x)) ∈ C,
Therefore, functions u and v solve (6) if and only if[

a1 b1
A B

] [
u
v

]
=

[
g

g′ − f

]
,

which holds if and only if [
u
v

]
=

1

a1B − b1A

[
B −b1
−A a1

] [
g

g′ − f

]
.

The ODE (1) is the special case where a0 = b00, and Gromov’s solution (5) is the one given
by setting g = 0.

4. Underdetermined first order quasilinear ODE

All of this can be generalized to a first order quasilinear ODE for two functions,

a(x, u, v)u′ + b(x, u, v)v′ = f(x, uv),

but using the implicit function theorem instead of explicit formulas to solve for u and v in
terms of an arbitrary function g.

Pfaff’s theorem states that an 1-form θ on R3 can be written in local-ordinates x, y, p as

θ = dy − p dx,
if and only if θ ∧ dθ 6= 0. Since

θ ∧ dθ = −dx ∧ dy ∧ dp,
this holds holds if and only if b1A− a1B 6= 0. Here, Pfaff’s theorem is not needed, because
(9) provide explicit formulas for y and p satisfying (8).
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