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A Unified Approach to Cramér-Rao Inequalities
Andrea Cianchi, Erwin Lutwak, Deane Yang, and Gaoyong Zhang

Abstract—A unified approach is presented for establishing a
broad class of Cramér-Rao inequalities for the location parame-
ter, including, as special cases, the original inequality of Cramér
and Rao, as well as an Lp version recently established by the
authors. The new approach allows for generalized moments and
Fisher information measures to be defined by convex functions
that are not necessarily homogeneous.

In particular, it is shown that associated with any log-
concave random variable whose density satisfies certain boundary
conditions is a Cramér-Rao inequality for which the given log-
concave random variable is the extremal. Applications to specific
instances are also provided.

Index Terms—moment, Fisher information, entropy, Shannon
entropy, Rényi entropy, Cramér-Rao inequality, information
measure

I. INTRODUCTION

A fundamental result of information theory and a real
analogue of the uncertainty principle in quantum mechanics
is the classical non-Bayesian Cramér-Rao inequality [2], [3]
(also, see [4]) for a smooth 1-parameter family of continuous
random variables X with corresponding distribution function
fθ. The inequality states that an unbiased estimator g(x) for
the parameter θ satisfies

E[(g(X)− θ)2]E

[(
∂ log fθ
dθ

(X)

)2
]
≥ 1. (1)

We will focus only on an important special case, where the
parameter θ is the location parameter. In that case, fθ(x) =
f(x − θ) and g(x) = x. Since the estimator is unbiased, it
follows that E[X] = θ and therefore (1) becomes

E[X2]E

[(
f ′(X)

f(X)

)2
]
≥ 1, (2)

where E[(f ′(X)/f(X))2] is known as the Fisher information
of X . Moreover, equality holds if and only if X is a Gaussian.

Vajda [5] introduced a generalized Fisher information,
E[|f ′(X)/f(X)|q], sometimes known as the Vajda informa-
tion measure (see, for example, [6]) and showed that it and
the p-moment, where p−1 + q−1 = 1, satisfy a generalized
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Cramér-Rao inequality (also, see [7], [1]). Here, equality holds
if and only if X is an Lp Gaussian. In [8] it was shown
that the Lp Fisher information defined is linked to not only
the p-th moment but also Shannon entropy and extended the
definition of Lp Fisher information introduced in [1] to an even
more general Fisher information linked to the p-th moment and
Rényi entropy. It was also shown that a Cramér-Rao inequality
exists in this setting and equality holds if and only if the
random variable X is a generalized Gaussian, where if the
entropy used is not Shannon but λ-Rényi for λ 6= 1, the density
function does not decay exponentially and is fat-tailed.

More recently, Bercher [9], [10], [11], [12] has stud-
ied generalized Fisher information and established general-
ized Cramér-Rao inequalities for parameterized distributions,
which, when the parameter is the location parameter, imply the
generalized Cramér-Rao inequalities stated above. Bercher and
Vignat [13], extending earlier work of Uhrmann-Klingen [14],
have also studied the extremal distributions for the classical
Cramér-Rao inequality restricted to random variables that lie
within a fixed interval.

In 2002 Vajda [15] introduced and studied an even more
generalized Fisher information, where the power function,
x 7→ |x|p, is replaced by an arbitrary convex function.

Here, we show how Vajda’s generalized Fisher information
can be used to obtain a single unified proof for a broad class
of Cramér-Rao inequalities, including the classical one as well
as a subset of the inequalities established in [8]. Such a proof
extends the original proof of the classical inequality to cover
the case of a generalized moment and Fisher information
that are defined by convex functions that are not necessarily
homogeneous.

The novel aspect of our approach to generalized Fisher
information, in contrast to those of Vajda and others, is that,
given a convex function φ∗, we do not define generalized
Fisher information directly as E[φ∗(f ′(X)/f(X))]. Instead,
we define generalized Fisher information to be the normal-
ization factor m∗ such that E[φ∗(f ′(m∗X)/f(m∗X))] is
equal to a pre-chosen fixed constant. This indirect approach
gives a definition of generalized Fisher information that scales
nicely when the random variable is rescaled. We believe
that this approach would also be effective for studying other
information measures that are defined in terms of a convex
function φ∗.

The observation that led to the unified proof presented here
is that neither the definitions of the moment and Fisher infor-
mation nor the proof of the classical Cramér-Rao inequality,
as well as the ones proved in [8], require the norms used
in the definitions of moment and Fisher information to be
defined in terms of the power function x 7→ |x|p. The proof
of the classical Cramér-Rao inequality uses only integration
by parts and the Cauchy-Schwarz inequality for the L2 norm
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of a function. This can be extended to a family of Lp Cramér-
Rao inequalities by using the Hölder inequality instead of the
Cauchy-Schwarz inequality. In this paper we show that if the
moment is defined using a strictly convex function, which we
call a gauge, and a corresponding Fisher information is defined
by the Legendre transform of the gauge, then the same proof
of the Cramér-Rao inequality follows by Young’s inequality
(5), of which the Cauchy-Schwarz and Hölder inequalities are
special cases.

In particular, given an appropriate convex function φ (see
Section II-A for details) and a random variable Y , we define
the φ-moment mφ[Y ] of Y in Section II-E and the φ-Fisher
information m∗φ[Y ] in Section II-F, which generalize the
standard definitions of moment and Fisher information. Using
these definitions we state in §III the main theorem of this
paper, Theorem 1.

Theorem 1 is, in turn, a direct consequence of a more
general theorem stated in §V, Theorem 2, which shows that
associated with any suitable log-concave random variable is
a Cramér-Rao inequality for which the given log-concave
random variable is the extremal.

Explicit examples of Theorem 1 are given in §VI. In
particular, we show in §VI-A that if we set φ(x) = x2/2,
then a corollary of Theorem 1 is the classical Cramér-Rao
inequality for the location parameter. The last two examples
are, as far as we know, new and give unique characterizations
of the logistic and power function distributions.

In the last section, §VII, we show how the equality case of
a generalized Cramér-Rao inequality leads to a way to identify
whether a random variable has a power function distribution
using appropriately defined information measures.

Other previous work on generalizations of Fisher informa-
tion, the Cramér-Rao inequality, and its proof include [16],
[7], [14], [1], [15], [17], [13], [18], [19], [6], [20], [11], [12],
[21], [22].

II. DEFINITIONS

A. Gaussian Gauge

We define a gauge to be a continuously differentiable
function φ : (x−, x+) → R, where −∞ ≤ x− < x+ ≤ ∞,
such that φ′ : (x−, x+)→ R is a strictly increasing function.
In particular, φ is strictly convex. We say a gauge is Gaussian,
if in addition ∫ x+

x−

e−φ(x) dx <∞.

B. φ-Gaussian random variable

Given a Gaussian gauge φ : (x−, x+) → R, we define the
standard φ-Gaussian random variable Xφ to be the random
variable whose density function is positive only on the interval
(x−, x+) and is given by

fφ(x) = e−φ(x)
/(∫ x+

x−

e−φ(y) dy

)
for x ∈ (x−, x+).

A real random variable X is a φ-Gaussian, if there exists
λ > 0 such that λX is the standard φ-Gaussian.

Note that any strictly log-concave random variable with
density f that is continuously differentiable on its support is
the standard φ-Gaussian, where φ = − log f .

C. Dual gauge

Denote the image φ′((x−, x+)) = (ξ−, ξ+) and define φ∗ :
(ξ−, ξ+)→ R as the function obeying

φ∗(φ′(x)) = xφ′(x)− φ(x), (3)

for each x ∈ (x−, x+).
Lemma 1: The function φ∗ : (ξ−, ξ+) → R is a con-

tinuously differentiable function whose derivative (φ∗)′ is
the inverse function of φ′ and therefore a strictly increasing
function from (ξ−, ξ+) onto (x−, x+).

Proof: Given ξ, η ∈ (ξ−, ξ+) such that ξ 6= η, let x, y ∈
(x−, x+) satisfy ξ = φ′(x) and η = φ′(y). The strict convexity
of φ implies that

0 < φ(x)−φ(y)−φ′(y)(x−y) < (y−x)(φ′(y)−φ′(x)). (4)

By (3) and (4),∣∣∣∣φ∗(η)− φ∗(ξ)
η − ξ

− (φ′)−1(ξ)

∣∣∣∣
=

∣∣∣∣φ∗(φ′(y))− φ∗(φ′(x))

φ′(y)− φ′(x)
− x
∣∣∣∣

=

∣∣∣∣yφ′(y)− φ(y)− (xφ′(x)− φ(x))

φ′(y)− φ′(x)
− x
∣∣∣∣

= |y − x|
[
φ(x)− φ(y)− φ′(y)(x− y)

(y − x)(φ′(y)− φ′(x))

]
< |(φ′)−1(η)− (φ′)−1(ξ)|.

The lemma now follows by taking the limit η → ξ.
We call φ∗ the polar gauge or dual gauge of φ. Observe,

however, that φ∗ is not necessarily a Gaussian gauge, because
the integral of e−φ

∗
over the interval (ξ−, ξ+) is not neces-

sarily finite.
The following is known as Young’s inequality (see, for ex-

ample, Arnol’d [23]) or Fenchel’s inequality (see, for example,
Rockafellar [24]).

Lemma 2: If φ is a gauge and φ∗ its dual gauge, then

xξ ≤ φ(x) + φ∗(ξ), (5)

for each x ∈ (x−, x+) and ξ ∈ (ξ−, ξ+). Moreover, the
following are equivalent:

xξ = φ(x) + φ∗(ξ)

ξ = φ′(x)

x = (φ∗)′(ξ).

Proof: Since φ′ is strictly increasing, if ξ ∈ (ξ−, ξ+), then
there exists a unique x̂ ∈ (x−, x+) such that ξ = φ′(x̂). Since
the function x 7→ ξx − φ(x) is strictly concave and x̂ is a
critical point, it follows that x̂ is in fact the unique maximum.
Therefore, if x ∈ (x−, x+), then, by (3),

ξx− φ(x) ≤ ξx̂− φ(x̂)

= ξ(φ′)−1(ξ)− φ
(
(φ′)−1(ξ)

)
= φ∗(ξ) .
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This proves inequality (5). Moreover, equality holds in (5) if
and only if ξ = φ′(x). The same argument applied to the
function ξ 7→ ξx − φ∗(ξ) shows that equality holds in (5) if
and only if x = (φ∗)′(ξ).

D. Examples of Gaussian gauges

The most commonly used gauge is the L2 gauge given
by φ(x) = x2/2; its polar gauge is φ∗(ξ) = ξ2/2. The
corresponding φ-Gaussian is the standard Gaussian. More
general is the Lp gauge, for each p ∈ (1,∞), where φ(x) =
|x|p/p and φ∗(ξ) = |ξ|q/q, where p−1 + q−1 = 1 (see, for
example, Arnol’d [23] or Rockafellar [24]). The corresponding
φ-Gaussian is the Lp Gaussian. Other examples of Gaussian
gauges are given in §VI.

E. The φ-moment

Given a Gaussian gauge φ and the standard φ-Gaussian
random variable Xφ, as defined in §II-B, assume that

−∞ < E[φ(Xφ)] <∞

and denote φ̂ = E[φ(Xφ)]. We then say that a continuous
random variable X has finite φ-moment, if there exists m > 0
such that

P

[
x− <

X

m
< x+

]
= 1 (6)

and
E

[
φ

(
X

m

)]
= φ̂. (7)

In that case, we define the φ-moment of X to be

mφ[X] = m. (8)

If φ(x) = x2/2, then mφ[X] is the second moment of X .
If φ(x) = |x|p/p, then mφ[X] is the usual p-th moment of X .

If c is a positive constant, then

mφ[cX] = cmφ[X].

By definition, if −∞ < φ̂ < ∞, then mφ[Xφ] = 1, and a
random variable X is a φ-Gaussian if and only if X/mφ[X]
is the standard φ-Gaussian.

F. The φ-Fisher information

Given a Gaussian gauge φ, define the random variable Ξφ
by

Ξφ = φ′(Xφ)

and denote
φ̂∗ = E[φ∗(Ξφ)], (9)

if it exists. Observe that

φ̂∗ = E[Xφφ
′(Xφ)]− φ̂. (10)

Given a continuous random variable X , let Ξ be the
continuous random variable given by

Ξ =

{
(− log f)′(X), if f(X) > 0

0, otherwise,
(11)

where f is the density function of X . We say that X has finite
φ-Fisher information, if there exists m∗ > 0 such that

P

[
ξ− <

Ξ

m∗
< ξ+

]
= 1 (12)

and
E

[
φ∗
(

Ξ

m∗

)]
= φ̂∗. (13)

The φ-Fisher information of X is defined to be

m∗φ[X] = m∗.

If φ(x) = x2/2, then φ∗(ξ) = ξ2/2 and the φ-Fisher infor-
mation is the classical Fisher information. If φ(x) = |x|p/p for
p > 1, then φ∗(ξ) = |ξ|q/q, where p−1+q−1 = 1. In this case,
the φ-Fisher information is the (p, λ)-th Fisher information
with λ = 1, as introduced in §II-D of [8],

m∗φ[X] =

(∫
R
|(log f)′|qf

)1/q

.

If c is a positive constant, then

m∗φ[cX] = c−1m∗φ[X].

Also, if −∞ < φ̂∗ <∞, then the φ-Fisher information of the
φ-Gaussian Xφ is equal to 1.

Note that given a Gaussian gauge φ, the φ-moment and φ-
Fisher information do not necessarily exist for a random vari-
able. Assumptions on the probability density and its derivative
must hold in order for these information measures to exist.
Throughout the rest of this paper we restrict our attention to
random variables for which these conditions hold.

G. Duality lemma

Lemma 3: Let φ be a Gaussian gauge such that −∞ < φ̂ <
∞ and fφ be the density function of the standard φ-Gaussian.
Assume that

`− = lim
x→x−

xfφ(x)

`+ = lim
x→x+

xfφ(x)
(14)

exist. Then φ̂∗ exists, and

φ̂+ φ̂∗ = 1− `+ + `−.

Proof: Denote

M =

∫ x+

x−

e−φ(x) dx.

By (10), integration by parts, and (14),

φ̂+ φ̂∗ = E[Xφφ
′(Xφ)]

=
1

M

∫ x+

x−

xφ′(x)e−φ(x) dx

= − 1

M

∫ x+

x−

x(e−φ(x))′ dx

= −`+ + `− +
1

M

∫ x+

x−

e−φ(x) dx

= 1− `+ + `−.
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III. MAIN THEOREM

Using the definitions from the previous section, we can now
state the main theorem of this paper.

Theorem 1: Let φ : R → R be a Gaussian gauge and fφ
the density function of the standard φ-Gaussian. If Y is a
continuous random variable with continuously differentiable
density function f : R→ [0,∞) such that

mφ[Y ],m∗φ[Y ] <∞, (15)

then

mφ[Y ]m∗φ[Y ] ≥ 1. (16)

Equality holds if and only if Y is a φ-Gaussian.
The rest of this paper is devoted to the proof of this theorem.

IV. THE GENERALIZED HÖLDER INEQUALITY

The following is a version of the Hölder inequality due to
Zygmund [25].

Lemma 4: Let φ be a gauge and φ∗ its dual gauge such that
−∞ < φ̂, φ̂∗ <∞. If m and m∗ are positive reals and X and
Y random variables such that

E

[
φ

(
X

m

)]
= φ̂

E

[
φ∗
(
Y

m∗

)]
= φ̂∗,

(17)

then

E[XY ] ≤ (φ̂+ φ̂∗)mm∗, (18)

with equality if and only if

Y

m∗
= φ′

(
X

m

)
(19)

with probability one.
Proof: By (5) and (17),

E[XY ]

mm∗
= E

[
X

m

Y

m∗

]
≤ E

[
φ

(
X

m

)
+ φ∗

(
Y

m∗

)]
= E

[
φ

(
X

m

)]
+ E

[
φ∗
(
Y

m∗

)]
= φ̂+ φ̂∗,

(20)

proving (18). Equality holds in (18) if and only if it holds in
(20). This in turn holds if and only if

X

m

Y

m∗
= φ

(
X

m

)
+ φ∗

(
Y

m∗

)
with probability one. By Lemma 2, this holds if and only if
(19) holds.

V. CRAMÉR-RAO INEQUALITIES

We now prove the following general theorem.
Theorem 2: Let φ : (x−, x+) → R be a Gaussian gauge

with φ-Gaussian Xφ, and Y a continuous random variable with
continuously differentiable density function f : (y−, y+) →
[0,∞). Assume that

mφ[Y ],m∗φ[Y ] <∞,

and that limy→y± yf(y) exist and are both finite. Define

ε± = lim
y→y±

yf(y). (21)

Then
(φ̂+ φ̂∗)mφ[Y ]m∗φ[Y ] ≥ 1− ε+ + ε−. (22)

Equality holds in (22) if and only if Y is a φ̃-Gaussian, where
φ̃ = mφ[Y ]m∗φ[Y ]φ. If, in addition, ε+ − ε− = `+ − `−, then
equality holds in (22) if and only if Y is a φ-Gaussian.

Proof: Let Ξ be the random variable given by

Ξ =

{
−f ′(Y )/f(Y ) if f(Y ) > 0

0 otherwise.

By integration by parts, (21), Lemma 4, and equations (7) and
(13),

1 =

∫ y+

y−

f(y) dy

= ε+ − ε− +

∫ y+

y−

−yf ′(y) dy

= ε+ − ε− +

∫ y+

y−

y(−f ′(y)/f(y))f(y) dy

= ε+ − ε− + E[Y Ξ]

≤ ε+ − ε− + (φ̂+ φ̂∗)mφ[Y ]m∗φ[Y ],

proving the inequality.
By the equality condition of Lemma 4 and the continuity of

f and f ′, equality holds if and only if, for each y ∈ (y−, y+)
such that f(y) > 0,

(− log f)′(y) =
d

dy
[mm∗φ(y/m)],

where m = mφ[Y ] and m∗ = m∗φ[Y ]. This in turn implies
that on each interval in (y−, y+) where f > 0 there exists
ã > 0 such that

f(y) = (ã/m)e−φ̃(y/m), (23)

where φ̃ is as defined in the statement of this theorem. Since
the right side of (23) is positive for any y ∈ (y−, y+),
it follows that each interval on which f > 0 is relatively
open and closed. Since f is assumed to be a probability
density, this set must also be nonempty. We conclude that f is
strictly positive and (23) holds on the entire interval (y−, y+).
Therefore, Y is a φ̃-Gaussian. If ε+ − ε− = `+ − `− and
equality holds in (22), then by Lemma 3, mm∗ = 1 and φ̃ = φ.
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To prove Theorem 1, first observe that if φ is a Gaussian
gauge on R, then there exists c > 0 and R > 0 such that
φ(y) ≥ c|y| if |y| > R. Therefore, since m = mφ[Y ] <∞,∫ ∞

R

yf(y) dy <
m

c

∫ ∞
R

φ
( y
m

)
f(y) dy <∞.

It follows that
lim inf
y→+∞

yf(y) = 0.

In particular, given any ε > 0 and R′ > 0, there exists R > R′

such that
Rf(R) <

ε

2
. (24)

On the other hand, since f is a probability density on R and
(15) holds, it follows that for any ε > 0, there exists R′ > 0
such that for any R > R′,∣∣∣∣∫ y

R

[
1 +mm∗

(
φ
( x
m

)
+ φ∗

(
f ′(x)/f(x)

m∗

))]
f(x) dx

∣∣∣∣
<
ε

2
. (25)

Therefore, given any ε > 0, there exists R > 0 such that both
(24) and (25) hold and therefore for any y > R,

yf(y)

= Rf(R) +

∫ y

R

f(x) + xf ′(x) dx

= Rf(R) +

∫ y

R

f(x) + x(f ′(x)/f(x))f(x) dx

≤ Rf(R)

+

∫ ∞
R

[
1 +mm∗

(
φ
( x
m

)
+ φ∗

(
f ′(x)/f(x)

m∗

))]
f(x) dx

< ε.

This and a similar argument for R and y negative applied to
both f and fφ gives

lim
y→±∞

yf(y) = lim
y→±∞

yfφ(y) = 0.

Theorem 1 now follows from Theorem 2, and Lemma 3.

VI. EXAMPLES

In this section we present specific examples of the Cramér-
Rao inequality implied by the unified Cramér-Rao inequality
given by Theorem 1. In §VI-A and §VI-B we show how
the classical (non-Bayesian) Cramér-Rao inequality for the
location parameter and the Lp generalization by Batalama and
Kazakos [1] (also, see [8]) are special cases of Theorem 1.

In §VI-C and §VI-D we present two Cramér-Rao inequal-
ities that, as far as we know, are new. In §VI-C we define
a Gaussian gauge φ naturally associated with the logistic
random variable and use it to define two new information
measures of a random variable, namely the “logistic moment”
and “logistic Fisher information”’. Theorem 1 then implies
that these information measures satisfy a sharp Cramér-Rao
inequality with equality holding if and only if the random
variable is logistic. In §VI-D we do the same for the power
function distribution.

A. The classical Cramér-Rao inequality

Theorem 2 with φ(x) = x2/2 yields the following.
Corollary 1: ([2], [3]) If X is a real random variable with

density function f that is continuously differentiable on R and
such that

E[X2], E[(−f ′(X)/f(X))2] <∞,

then
E[X2]E[(−f ′(X)/f(X))2] ≥ 1,

with equality holding if and only if X is Gaussian.

B. The Lp Cramér-Rao inequality

Theorem 2 with φ(x) = |x|p/p, where 1 < p < ∞, yields
the following.

Corollary 2: (the case p > 1 and λ = 1 of Theorem 5 in
[8]) If 1 < p, q <∞ satisfy

1

p
+

1

q
= 1

and X is a real random variable with density function f that
is continuously differentiable on R and such that

E[|X|p], E[| − f ′(X)/f(X)|q] <∞,

then
E[|X|p]1/pE[| − f ′(X)/f(X)|q]1/q ≥ 1,

with equality holding if and only if the density function of X
is of the form

f(x) = ae−b|x|
p

,

where a and b are positive constants.

C. The Cramér-Rao inequality for the logistic random vari-
able

If φ : R→ R is given by

φ(x) = x+ 2 log(1 + e−x),

then the probability distribution for any constant multiple of
the φ-Gaussian Xφ is known as a logistic distribution [26].
The dual gauge is the function φ∗ : (−1, 1)→ R given by

φ∗(ξ) = (1 + ξ) log

(
1 + ξ

2

)
+ (1− ξ) log

(
1− ξ

2

)
.

A straightforward calculation shows that φ̂ = 2 and φ̂∗ = −1.
Let X be a continuous random variable with density func-

tion f that is continuously differentiable on R. Define the
logistic moment of X to be m > 0 be such that

E

[
X

m
+ 2 log(1 + e−X/m)

]
= 2.

Denoting

Ξ =

{
(− log f)′(X) if f(X) > 0

0 otherwise,

suppose there exists m∗ > 0 such that

P [−m∗ < Ξ < m∗] = 1.
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and

E

[
log

(
1 + Ξ/m∗

2

)1+Ξ/m∗ (
1− Ξ/m∗

2

)1−Ξ/m∗]
= −1.

Call m∗ the logistic Fisher information of X .
Theorem 2 then implies the following.
Corollary 3: The logistic moment m and Fisher informa-

tion m∗ of X satisfy

mm∗ ≥ 1,

with equality holding if and only if X is logistic.

D. A Cramér-Rao inequality for the power function distribu-
tion

Here, we state and prove a Cramér-Rao inequality, where
the extremal distribution is a power function.

Corollary 4: Let X be a continuous random variable with
density f satisfying the following:

P [0 < X < 1] = 1;

f : [0, 1]→ [0,∞) is continuous;

f is continuously differentiable on (0, 1); (26)

f ′ > 0 on (0, 1);

E[logX] > −1; (27)

−∞ < E[log(f ′(X)/f(X))] <∞; (28)

log

(
−1− 1

E[logX]

)
≤ E[logX] + E[log(f ′(X)/f(X))]; (29)

inf
0<x<1

log(f ′(x)/f(x))

≥ E[logX] + E[log(f ′(X)/f(X))]. (30)

Then

E[logX] + E[log(f ′(X)/f(X))] ≤ log(f(1)− 1). (31)

Equality holds if and only if f(x) = (p+ 1)xp, where p > 0
satisfies

p+ 1 = − 1

E[logX]
. (32)

Proof: Given a random variable X satisfying the assump-
tions of the theorem, let p > 0 be given by (32). Define the
gauge φ : (0, 1)→ R by

φ(x) = −p log x.

The φ-Gaussian Xφ has density

fφ(x) = (p+ 1)xp,

and the dual gauge is φ∗ : (−∞,−p)→ R, where

φ∗(ξ) = p(−1 + log p− log(−ξ)).

A straightforward calculation shows that

φ̂ =
p

p+ 1
;

φ̂∗ = −p(p+ 2)

p+ 1
;

φ̂+ φ̂∗ = −p.

Given a random variable X on (0, 1), another straightfor-
ward calculation shows that if (27) holds, then X has a finite
φ-moment and

mφ[X] = 1. (33)

Similarly, if (27), (28), (29), and (30) hold, then X has a finite
φ-Fisher information and

logm∗φ[X] = E[logX]+E[log(f ′(X)/f(X))]− log p. (34)

We also claim that f(1) > 1. If not, then since f is strictly
increasing, it follows that f < 1 on the interval (0, 1) and
therefore

∫ 1

0
f(x) dx < 1, which contradicts the assumption

that f is a probability density on (0, 1).

Theorem 2 now implies that

logmφ[X] + logm∗φ[X] + log p ≤ log(f(1)− 1).

Substituting equations (33) and (34) into this inequality gives
(31). If equality holds, then by Theorem 2, f(x) = (p+ 1)xp.

It is worth noting that since φ̂ + φ̂∗ < 0, this version of
the Cramér-Rao inequality gives an upper instead of the usual
lower bound for product of the generalized moment and Fisher
information.

VII. IDENTIFICATION OF A POWER FUNCTION
DISTRIBUTION AND ITS POWER

The classical Cramér-Rao inequality (2) shows how to iden-
tify a Gaussian random variable from its variance and Fisher
information. Similarly, Corollary 4 shows how to identify
a power function distribution using generalized information
measures.

In particular, let Y be a random variable with density g such
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that the following hold:

P [0 < Y < L] = 1;

g : [0, L]→ [0,∞) is continuous;

g is continuously differentiable on (0, L);

g′ < 0 on (0, L);

E[log(1− Y/L)] > −1;

−∞ < E[log(−g′(Y )/g(Y ))] <∞;

log

(
−1− 1

E[log(1− Y/L)]

)
≤ E[log(1− Y/L)] + E[log(−g′(Y )/g(Y ))];

inf
0<y<L

log(−g′(y)/g(y))

≥ E[log(1− Y/L)] + E[log(−g′(Y )/g(Y ))].

By setting Y = L(1−X), the assumptions above for Y imply
the assumptions for X in Corollary 4. The fact that

f(1) > 1

implies that
g(0) > 1/L.

The corollary therefore implies that any random variable Y
satisfying the assumptions above, the inequality

E[log(L− Y )] + E[log(−g′(Y )/g(Y ))] ≤ log(Lg(0)− 1)
(35)

holds. Moreover, equality holds if and only if Y has a
decreasing power function density function

g(y) =
p+ 1

Lp+1
(L− y)p,

where the power p is given by

p+ 1 =
1

logL− E[log(L− Y )]
.

Fig 1 shows the graph of several possible power function
distribution functions with L = 1.

REFERENCES

[1] S. Batalama and D. Kazakos, “On the generalized Cramer-Rao bound for
the estimation of the location,” IEEE Transactions on Signal Processing,
vol. 45, no. 2, pp. 487–492, 1997.

[2] H. Cramér, Mathematical methods of statistics, ser. Princeton Landmarks
in Mathematics. Princeton, NJ: Princeton University Press, 1999, reprint
of the 1946 original.

[3] C. R. Rao, “Information and the accuracy attainable in the estimation
of statistical parameters,” Bull. Calcutta Math. Soc., vol. 37, pp. 81–91,
1945.

[4] T. M. Cover and J. A. Thomas, Elements of information theory. New
York: John Wiley & Sons Inc., 1991, a Wiley-Interscience Publication.

[5] I. Vajda, “χα-divergence and generalized Fisher’s information,” in
Transactions of the Sixth Prague Conference on Information Theory,
Statistical Decision Functions, Random Processes (Tech. Univ. Prague,
Prague, 1971; dedicated to the memory of Antonı́n Špaček). Prague:
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